Saturday, October 1, 2022
HomeMicrobiologyUtilizing a number of sampling methods to estimate SARS-CoV-2 epidemiological parameters from...

Utilizing a number of sampling methods to estimate SARS-CoV-2 epidemiological parameters from genomic sequencing knowledge

Facebook
Twitter
Pinterest
WhatsApp

  • Gorbalenya, A. E. et al. The species Extreme acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 5, 536–544 (2020).

    Google Scholar 

  • Zhu, N. et al. A novel coronavirus from sufferers with pneumonia in China, 2019. N. Engl. J. Med. 382, 727–733 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • World Well being Organisation. Public Well being Emergency of Worldwide Concern (PHEIC). (World well being organisation, 2020).

  • Verity, R. et al. Estimates of the severity of coronavirus illness 2019: a model-based evaluation. Lancet Infect. Dis. 20, 669–677 (2020).

    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • World Well being Organisation. Coronavirus illness (COVID-19) Weekly Epidemiological Replace and Weekly Operational Replace. https://www.who.int/emergencies/ailments/novel-coronavirus-2019/situation-reports (2022).

  • European Centre for Illness Prevention and Management. Tips For The Implementation of Non-pharmaceutical Interventions Towards COVID-19 Key messages Basic issues on NPI to Management COVID-19 (2020).

  • Anderson, Vegari, C., Baggaley, R., Hollingsworth, T. D. D. & Maddren, R. The Royal Society SET-C Experiences. Replica Quantity (R) and Development Charge (r) of the COVID-19 Epidemic within the UK: Strategies Of Estimation, Knowledge Sources, Causes Of Heterogeneity, And Use As A Information In Coverage Formulation [Report Unpublished]. 1–86 (The Royal Society, 2020).

  • UK Well being Safety Company. The R Worth And Development Charge. https://www.gov.uk/steerage/the-r-value-and-growth-rate (2022).

  • Parag, Ok. V., Thompson, R. N. & Donnelly, C. A. Are epidemic development charges extra informative than copy numbers? J R Stat Soc Ser A Stat Soc. https://doi.org/10.1111/rssa.12867 (2022). [Epub ahead of print].

  • Dushoff, J. & Park, S. W. Velocity and power of an epidemic intervention. Proc. R. Soc. B: Biol. Sci. 288, 20201556 (2021).

    Google Scholar 

  • World Well being Organisation. Genomic Sequencing of SARS-CoV-2 A Information to Implementation for Most Impression on Public Well being. (World well being organisation, 2021).

  • Jombart, T. et al. Bayesian reconstruction of illness outbreaks by combining epidemiologic and genomic knowledge. PLoS Comput. Biol. 10, e1003457 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Duchene, S. et al. Temporal sign and the phylodynamic threshold of SARS-CoV-2. Virus Evol. 6, veaa061 (2020).

  • Faria, N. R. et al. Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science 372, 815 LP–815821 (2021).

    ADS 

    Google Scholar 

  • Nadeau, S. A., Vaughan, T. G., Scire, J., Huisman, J. S. & Stadler, T. The origin and early unfold of SARS-CoV-2 in Europe. Proc. Natl Acad. Sci. USA 118, e2012008118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Romano, C. M. & Melo, F. L. Genomic surveillance of SARS-CoV-2: a race towards time. The Lancet Regional Well being – Americas. p. 100029 (2021)..

  • Volz, E. et al. Evaluating the results of SARS-CoV-2 spike mutation D614G on transmissibility and pathogenicity. Cell 184, 64–75.e11 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dudas, G. et al. Virus genomes reveal components that unfold and sustained the Ebola epidemic. Nature https://doi.org/10.1038/nature22040 (2017).

  • Faria, N. R. et al. Institution and cryptic transmission of Zika virus in Brazil and the Americas. Nature 546, 406–410 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grubaugh, N. D. et al. Genomic epidemiology reveals a number of introductions of Zika virus into the USA. Nature 546, 401–405 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Harvey, W. T. et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat. Rev. Microbiol. 19, 409–424 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rambaut, A. et al. A dynamic nomenclature proposal for SARS-CoV-2 lineages to help genomic epidemiology. Nat. Microbiol. 5, 1403–1407 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shu, Y. & McCauley, J. GISAID: international initiative on sharing all influenza knowledge – from imaginative and prescient to actuality. Eur. Surveill. 22, 30494 (2017).

    Google Scholar 

  • Tsang, T. Ok. et al. Impact of adjusting case definitions for COVID-19 on the epidemic curve and transmission parameters in mainland China: a modelling examine. Lancet Public Well being 5, e289–e296 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • de Souza, W. M. et al. Epidemiological and scientific traits of the COVID-19 epidemic in Brazil. Nat. Hum. Behav. 4, 856–865 (2020).

    PubMed 

    Google Scholar 

  • Dolan, P. T., Whitfield, Z. J. & Andino, R. Mapping the evolutionary potential of RNA viruses. Cell Host Microbe 23, 435–446 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Drummond, A. J., Rambaut, A., Shapiro, B. & Pybus, O. G. Bayesian coalescent inference of previous inhabitants dynamics from molecular sequences. Mol. Biol. Evol. 22, 1185–1192 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Gill, M. S. et al. Bettering Bayesian inhabitants dynamics inference: a coalescent-based mannequin for a number of loci. Mol. Biol. Evol. 30, 713–724 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Stadler, T., Kühnert, D., Bonhoeffer, S. & Drummond, A. J. Beginning–demise skyline plot reveals temporal adjustments of epidemic unfold in HIV and hepatitis C virus (HCV). Proc. Natl Acad. Sci. USA 110, 228 LP–228233 (2013).

    ADS 

    Google Scholar 

  • Corridor, M. D., Woolhouse, M. E. J. & Rambaut, A. The results of sampling technique on the standard of reconstruction of viral inhabitants dynamics utilizing Bayesian skyline household coalescent strategies: a simulation examine. Virus Evol. 2, vew003–vew003 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Parag, Ok. V., du Plessis, L. & Pybus, O. G. Collectively inferring the dynamics of inhabitants dimension and sampling depth from molecular sequences. Mol. Biol. Evol. 37, 2414–2429 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stack, J. C., Welch, J. D., Ferrari, M. J., Shapiro, B. U. & Grenfell, B. T. Protocols for sampling viral sequences to review epidemic dynamics. J. R. Soc. Interface 7, 1119–1127 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • de Silva, E., Ferguson, N. M. & Fraser, C. Inferring pandemic development charges from sequence knowledge. J. R. Soc. Interface 9, 1797–1808 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Karcher, M. D., Palacios, J. A., Bedford, T., Suchard, M. A. & Minin, V. N. Quantifying and mitigating the impact of preferential sampling on phylodynamic inference. PLoS Comput. Biol. 12, e1004789–e1004789 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Frost, S. D. W. et al. Eight challenges in phylodynamic inference. Epidemics 10, 88–92 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • du Plessis, L. et al. Institution and lineage dynamics of the SARS-CoV-2 epidemic within the UK. Science 371, 708–712 (2021).

    ADS 
    PubMed 

    Google Scholar 

  • Hidano, A. & Gates, M. C. Assessing biases in phylodynamic inferences within the presence of super-spreaders. Vet. Res. 50, 74 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Cowling, B. J. et al. Impression evaluation of non-pharmaceutical interventions towards coronavirus illness 2019 and influenza in Hong Kong: an observational examine. Lancet Public Well being 5, e279–e288 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, P. et al. Suppressing COVID-19 Transmission in Hong Kong: An Observational Examine of the First 4 Months. SSRN https://doi.org/10.21203/rs.3.rs−34047/v1 (2020).

  • Nascimento, V. A. et al. Genomic and phylogenetic characterisation of an imported case of SARS-CoV-2 in Amazonas State, Brazil. Mem. Inst. Oswaldo Cruz 115, e200310 (2020).

  • Faria, N. R. et al. Genomic characterisation of an emergent SARS-CoV-2 lineage in Manaus: preliminary findings. Virological https://virological.org/t/genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-manaus-preliminary-findings/586 (2021).

  • Drummond, A. J., Pybus, O. G., Rambaut, A., Forsberg, R. & Rodrigo, A. G. Measurably evolving populations. Tendencies Ecol. Evol. 18, 481–488 (2003).

    Google Scholar 

  • Zhao, S. et al. Preliminary estimation of the fundamental copy variety of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: a data-driven evaluation within the early section of the outbreak. Int. J. Infect. Dis. 92, 214–217 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Volz, E. M., Koelle, Ok. & Bedford, T. Viral phylodynamics. PLoS Comput. Biol. 9, e1002947–e1002947 (2013).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Andersen, Ok. G., Rambaut, A., Lipkin, W. I., Holmes, E. C. & Garry, R. F. The proximal origin of SARS-CoV-2. Nat. Med. https://doi.org/10.1038/s41591-020-0820-9 (2020).

  • Naveca, F. G. et al. COVID-19 in Amazonas, Brazil, was pushed by the persistence of endemic lineages and P.1 emergence. Nat. Med. 27, 1230–1238 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Boskova, V., Stadler, T. & Magnus, C. The affect of phylodynamic mannequin specs on parameter estimates of the Zika virus epidemic. Virus Evol. 4, vex044 (2018).

  • Liu, Q. et al. Inhabitants genetics of SARS-CoV-2: disentangling results of sampling bias and an infection clusters. Genomics Proteomics Bioinformatics 18, 640–647 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Adam, D. C. et al. Clustering and superspreading potential of SARS-CoV-2 infections in Hong Kong. Nat. Med. 26, 1714–1719 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Parag, Ok. V., Cowling, B. J. & Donnelly, C. A. Deciphering early-warning indicators of SARS-CoV-2 elimination and resurgence from restricted knowledge at a number of scales. J. R. Soc. Interface 18, 20210569 (2022).

    Google Scholar 

  • Vasylyeva, T. I. et al. Phylodynamics helps to guage the affect of an HIV prevention intervention. Viruses 12, 1–15 (2020).

    Google Scholar 

  • Sabino, E. C. et al. Resurgence of COVID-19 in Manaus, Brazil, regardless of excessive seroprevalence. Lancet 397, 452–455 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Buss, L. et al. Three-quarters assault price of SARS-CoV-2 within the Brazilian Amazon throughout a largely unmitigated epidemic. Science 371, 288–292 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Gostic, Ok. M. et al. Sensible issues for measuring the efficient reproductive quantity, Rt. PLOS Comput. Biol. 16, e1008409 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pullano, G. et al. Underdetection of instances of COVID-19 in France threatens epidemic management. Nature 590, 134–139 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Parag, Ok. V. Improved estimation of time-varying copy numbers at low case incidence and between epidemic waves. PLoS Comput. Biol. 17, e1009347 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fraser, C. Estimating particular person and family copy numbers in an rising epidemic. PLoS ONE 2, e758 (2007).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cori, A., Ferguson, N. M., Fraser, C. & Cauchemez, S. A New framework and software program to estimate time-varying copy numbers throughout epidemics. Am. J. Epidemiol. 178, 1505–1512 (2013).

    PubMed 

    Google Scholar 

  • Wallinga, J. & Teunis, P. Totally different epidemic curves for extreme acute respiratory syndrome reveal related impacts of management measures. Am. J. Epidemiol. 160, 509–516 (2004).

    PubMed 

    Google Scholar 

  • Wallinga & Lipsitch How technology intervals form the connection between development charges and reproductive numbers. Proc. R. Soc. B: Biol. Sci. 274, 599–604 (2007).

    Google Scholar 

  • Rai, B., Shukla, A. & Dwivedi, L. Ok. Estimates of serial interval for COVID-19: A scientific evaluate and meta-analysis. Clin. Epidemiol. Glob. well being 9, 157–161 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Prete, C. A. et al. Serial interval distribution of SARS-CoV-2 an infection in Brazil. J. Journey Med. 28, 1–3 (2021).

    Google Scholar 

  • Katoh, Ok., Misawa, Ok., Kuma, Ok. & Miyata, T. MAFFT: a novel technique for speedy a number of sequence alignment based mostly on quick Fourier remodel. Nucleic Acids Res. 30, 3059–3066 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hadfield, J. et al. Nextstrain: real-time monitoring of pathogen evolution. Bioinformatics 34, 4121–4123 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Minh, B. Q. et al. IQ-TREE 2: new fashions and environment friendly strategies for phylogenetic inference within the genomic period. Mol. Biol. Evol. 37, 1530–1534 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kalyaanamoorthy, S., Minh, B. Q., Wong, T. Ok. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: quick mannequin choice for correct phylogenetic estimates. Nat. Strategies 14, 587–589 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tamura, Ok. & Nei, M. Estimation of the variety of nucleotide substitutions within the management area of mitochondrial DNA in people and chimpanzees. Mol. Biol. Evolution 10, 512–526 (1993).

    CAS 

    Google Scholar 

  • Anisimova, M., Gil, M., Dufayard, J.-F., Dessimoz, C. & Gascuel, O. Survey of department help strategies demonstrates accuracy, energy, and robustness of quick likelihood-based approximation schemes. Syst. Biol. 60, 685–699 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rambaut, A., Lam, T. T., Max Carvalho, L. & Pybus, O. G. Exploring the temporal construction of heterochronous sequences utilizing TempEst (previously Path-O-Gen). Virus Evol. 2, vew007–vew007 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • World Well being Organisation. Steerage For Surveillance of SARS-CoV-2 Variants Interim Steerage. (World well being organisation, 2021).

  • Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic knowledge integration utilizing BEAST 1.10. Virus Evol. 4, vey016–vey016 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ayres, D. L. et al. BEAGLE 3: improved efficiency, scaling, and value for a high-performance computing library for statistical phylogenetics. Syst. Biol. 68, 1052–1061 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hasegawa, M., Kishino, H. & Yano, T. Courting of the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 22, 160–174 (1985).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Hill, V. & Baele, G. Bayesian estimation of previous inhabitants dynamics in BEAST 1.10 utilizing the skygrid coalescent mannequin. Mol. Biol. Evol. 36, 2620–2628 (2019).

    CAS 
    PubMed Central 

    Google Scholar 

  • Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in bayesian phylogenetics utilizing tracer 1.7. Syst. Biol. 67, 901–904 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bouckaert, R. et al. BEAST 2.5: a complicated software program platform for Bayesian evolutionary evaluation. PLoS Comput. Biol. 15, e1006650 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Volz, E. M. & Didelot, X. Modeling the expansion and decline of pathogen efficient inhabitants dimension offers perception into epidemic dynamics and drivers of antimicrobial resistance. Syst. Biol. 67, 719–728 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lin, J. Divergence measures based mostly on the Shannon entropy. IEEE Trans. Inf. Principle 37, 145–151 (1991).

    MathSciNet 
    MATH 

    Google Scholar 

  • Kullback, S. & Leibler, R. A. On data and sufficiency. Ann. Math. Stat. 22, 79–86 (1951).

    MathSciNet 
    MATH 

    Google Scholar 

  • The World Financial institution. Inhabitants, complete – Hong Kong SAR, China. https://knowledge.worldbank.org/indicator/SP.POP.TOTL?areas=HK (2021).

  • IBGE. Inhabitants Projections. https://www.ibge.gov.br/en/statistics/social/inhabitants.html (2020).

  • Byrne, A. W. et al. Inferred period of infectious interval of SARS-CoV-2: Fast scoping evaluate and evaluation of accessible proof for asymptomatic and symptomatic COVID-19 instances. BMJ Open 10, 1–16 (2020).

    Google Scholar 

  • McAloon, C. et al. Incubation interval of COVID-19: a speedy systematic evaluate and meta-analysis of observational analysis. BMJ Open 10, e039652 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Facebook
    Twitter
    Pinterest
    WhatsApp
    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments