Monday, September 26, 2022
HomeMicrobiologySeasonal microbial dynamics within the ocean inferred from assembled and unassembled information:...

Seasonal microbial dynamics within the ocean inferred from assembled and unassembled information: a view on the unknown biosphere

Facebook
Twitter
Pinterest
WhatsApp

  • Sharon I, Kertesz M, Hug LA, Pushkarev D, Blauwkamp TA, Castelle CJ, et al. Correct, multi-kb reads resolve advanced populations and detect uncommon microorganisms. Genome Res. 2015;25:534–43.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bankevich A, Pevzner PA. Joint evaluation of lengthy and quick reads permits correct estimates of microbiome complexity. Cell Syst. 2018;7:192–200.e3.

    CAS 
    PubMed 

    Google Scholar 

  • Luo C, Tsementzi D, Kyrpides NC, Konstantinidis KT. Particular person genome meeting from advanced group short-read metagenomic datasets. ISME J. 2012;6:898–901.

    CAS 
    PubMed 

    Google Scholar 

  • Lapidus AL, Korobeynikov AI. Metagenomic information meeting—the best way of decoding unknown microorganisms. Entrance Microbiol. 2021;12:613791.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Nielsen HB, Almeida M, Juncker AS, Rasmussen S, Li J, Sunagawa S, et al. Identification and meeting of genomes and genetic components in advanced metagenomic samples with out utilizing reference genomes. Nat Biotech. 2014;32:822–8.

    CAS 

    Google Scholar 

  • Biller SJ, Berube PM, Lindell D, Chisholm SW. Prochlorococcus: the construction and performance of collective variety. Nat Rev Microbiol. 2015;13:13–27.

    CAS 
    PubMed 

    Google Scholar 

  • Crespo BG, Wallhead PJ, Logares R, Pedrós-Alió C. Probing the uncommon biosphere of the North-West Mediterranean Sea: an experiment with excessive sequencing effort. PLOS ONE. 2016;11:e0159195.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, et al. Microbial variety within the deep sea and the underexplored “uncommon biosphere”. Proc Natl Acad Sci USA. 2006;103:12115–20.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pedrós-Alió C. Dipping into the uncommon biosphere. Science. 2007;315:192–3.

    PubMed 

    Google Scholar 

  • Sauret C, Séverin T, Vétion G, Guigue C, Goutx M, Pujo-Pay M, et al. ‘Uncommon biosphere’ micro organism as key phenanthrene degraders in coastal seawaters. Environmental Air pollution. 2014;194:246–53.

    CAS 
    PubMed 

    Google Scholar 

  • Kalenitchenko D, Le Bris N, Peru E, Galand PE. Extremely-rare marine microbes contribute to key sulfur associated ecosystem capabilities. Mol Ecol. 2018;27:1494–504.

    PubMed 

    Google Scholar 

  • Capo E, Debroas D, Arnaud F, Guillemot T, Bichet V, Millet L, et al. Lengthy-term dynamics in microbial eukaryotes communities: a palaeolimnological view primarily based on sedimentary DNA. Mol Ecol. 2016;25:5925–43.

    CAS 
    PubMed 

    Google Scholar 

  • Lynch MDJ, Neufeld JD. Ecology and exploration of the uncommon biosphere. Nat Rev Micro. 2015;13:217–29.

    CAS 

    Google Scholar 

  • Debroas D, Hugoni M, Domaizon I. Proof for an energetic uncommon biosphere inside freshwater protists group. Mol Ecol. 2015;24:1236–47.

    CAS 
    PubMed 

    Google Scholar 

  • Banerjee S, Schlaeppi Okay, Heijden MGA. Keystone taxa as drivers of microbiome construction and functioning. Nat Rev Microbiol. 2018;16:567–76.

    CAS 
    PubMed 

    Google Scholar 

  • Herren CM, McMahon KD. Keystone taxa predict compositional change in microbial communities. Environ Microbiol. 2018;20:2207–17.

    PubMed 

    Google Scholar 

  • Hugoni M, Taib N, Debroas D, Domaizon I, Dufournel IJ, Bronner G, et al. Construction of the uncommon archaeal biosphere and seasonal dynamics of energetic ecotypes in floor coastal waters. PNAS. 2013;110:6004–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Debroas D, Domaizon I, Humbert J-F, Jardillier L, Lepère C, Oudart A, et al. Overview of freshwater microbial eukaryotes variety: a primary evaluation of publicly obtainable metabarcoding information. FEMS Microbiol Ecol. 2017;93:1.

    Google Scholar 

  • Elshahed MS, Youssef NH, Spain AM, Sheik C, Najar FZ, Sukharnikov LO, et al. Novelty and uniqueness patterns of uncommon members of the soil biosphere. Appl Environ Microbiol. 2008;74:5422–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pascoal F, Magalhães C, Costa R. The Hyperlink Between the Ecology of the Prokaryotic Uncommon Biosphere and Its Biotechnological Potential. Entrance Microbiol. 2020;11:231.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng J-F, et al. Insights into the phylogeny and coding potential of microbial darkish matter. Nature. 2013;499:431–7.

    CAS 
    PubMed 

    Google Scholar 

  • Delmont TO, Eren AM, Maccario L, Prestat E, Esen ÖC, Pelletier E, et al. Reconstructing uncommon soil microbial genomes utilizing in situ enrichments and metagenomics. Entrance Microbiol. 2015;6:358.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sachdeva R, Campbell BJ, Heidelberg JF Uncommon microbes from various Earth biomes dominate group exercise. bioRxiv 2019; 636373. https://doi.org/10.1101/636373.

  • Galand PE, Pereira O, Hochart C, Auguet JC, Debroas D. A powerful hyperlink between marine microbial group composition and performance challenges the thought of purposeful redundancy. ISME J. 2018;12:2470–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bolger AM, Lohse M, Usadel B. Trimmomatic: a versatile trimmer for Illumina sequence information. Bioinformatics. 2014;30:2114–20.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Peng Y, Leung HCM, Yiu SM, Chin FYL. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing information with extremely uneven depth. Bioinformatics. 2012;28:1420–8.

    CAS 
    PubMed 

    Google Scholar 

  • Li H, Durbin R. Quick and correct long-read alignment with Burrows-Wheeler rework. Bioinformatics. 2010;26:589–95.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ulyantsev VI, Kazakov SV, Dubinkina VB, Tyakht AV, Alexeev DG. MetaFast: quick reference-free graph-based comparability of shotgun metagenomic information. Bioinformatics. 2016;32:2760–7.

    CAS 
    PubMed 

    Google Scholar 

  • Dixon P. VEGAN, a bundle of R capabilities for group ecology. J Vegetation Sci. 2003;14:927–30.

    Google Scholar 

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database venture: improved information processing and web-based instruments. Nucleic Acids Res. 2013;41:D590–D596.

    CAS 
    PubMed 

    Google Scholar 

  • Truong DT, Franzosa EA, Tickle TL, Scholz M, Weingart G, Pasolli E, et al. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nature strategies. 2015;12:902–3.

    CAS 
    PubMed 

    Google Scholar 

  • Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and clarification. Genome Biology. 2011;12:R60.

    PubMed 
    PubMed Central 

    Google Scholar 

  • The UniProt Consortium. UniProt: the common protein knowledgebase. Nucleic Acids Res. 2017;45:D158–D169.

    Google Scholar 

  • Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference useful resource for gene and protein annotation. Nucleic Acids Res. 2016;44:D457–D462.

    CAS 
    PubMed 

    Google Scholar 

  • Buchfink B, Xie C, Huson DH. Quick and delicate protein alignment utilizing DIAMOND. Nat Meth. 2015;12:59–60.

    CAS 

    Google Scholar 

  • Fernandes AD, Reid JN, Macklaim JM, McMurrough TA, Edgell DR, Gloor GB. Unifying the evaluation of high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing and selective development experiments by compositional information evaluation. Microbiome. 2014;2:15.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome datasets are compositional: and this isn’t non-compulsory. Entrance Microbiol. 2017;8:2224.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Luo W, Friedman MS, Shedden Okay, Hankenson KD, Woolf PJ. GAGE: typically relevant gene set enrichment for pathway evaluation. BMC Bioinformatics. 2009;10:161.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Luo W, Brouwer C. Pathview: an R/Bioconductor bundle for pathway-based information integration and visualization. Bioinformatics. 2013;29:1830–1.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rohart F, Gautier B, Singh A, Cao Okay-AL. mixOmics: An R bundle for ‘omics function choice and a number of information integration. PLOS Computational Biology. 2017;13:e1005752.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Palarea-Albaladejo J, Martín-Fernández JA. zCompositions—R bundle for multivariate imputation of left-censored information underneath a compositional method. Chemometrics Intell Lab Syst. 2015;143:85–96.

    CAS 

    Google Scholar 

  • Plaza Oñate F, Le Chatelier E, Almeida M, Cervino ACL, Gauthier F, Magoulès F, et al. MSPminer: abundance-based reconstitution of microbial pan-genomes from shotgun metagenomic information. Bioinformatics. 2019;35:1544–52.

    PubMed 

    Google Scholar 

  • Csardi G, Nepusz T. The Igraph Software program Bundle for Advanced Community Analysis. InterJournal 2006, Advanced Methods, 1695.

  • Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the standard of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Epskamp S, Cramer AOJ, Waldorp LJ, Schmittmann VD, Borsboom D. qgraph: Community Visualizations of Relationships in Psychometric Information. J Stat Softw. 2012;48:1–18.

    Google Scholar 

  • Lambert S, Tragin M, Lozano J-C, Ghiglione J-F, Vaulot D, Bouget F-Y, et al. Rhythmicity of coastal marine picoeukaryotes, micro organism and archaea regardless of irregular environmental perturbations. ISME J. 2019;13:388–401.

    PubMed 

    Google Scholar 

  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: Excessive-resolution pattern inference from Illumina amplicon information. Nat Strategies. 2016;13:581–3.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Galand PE, Casamayor EO, Kirchman DL, Lovejoy C. Ecology of the uncommon microbial biosphere of the Arctic Ocean. PNAS. 2009;106:22427–32.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Campbell BJ, Yu L, Heidelberg JF, Kirchman DL. Exercise of considerable and uncommon micro organism in a Coastal Ocean. Proc Natl Acad Sci USA. 2011;108:12776–81.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Morris RM, Rappé MS, Connon SA, Vergin KL, Siebold WA, Carlson CA, et al. SAR11 clade dominates ocean floor bacterioplankton communities. Nature. 2002;420:806–10.

    CAS 
    PubMed 

    Google Scholar 

  • Bouvier T, del Giorgio PA. Key position of selective viral-induced mortality in figuring out marine bacterial group composition. Environ Microbiol. 2007;9:287–97.

    CAS 
    PubMed 

    Google Scholar 

  • Thingstad TF, Våge S, Storesund JE, Sandaa R-A, Giske J. A theoretical evaluation of how strain-specific viruses can management microbial species variety. Proc Natl Acad Sci USA. 2014;111:7813–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pedrós-Alió C. Marine microbial variety: can or not it’s decided? Tendencies Microbiol. 2006;14:257–63.

    PubMed 

    Google Scholar 

  • Gobet A, Böer SI, Huse SM, van Beusekom JEE, Quince C, Sogin ML, et al. Variety and dynamics of uncommon and of resident bacterial populations in coastal sands. ISME J. 2012;6:542–53.

    PubMed 

    Google Scholar 

  • Pascoal F, Costa R, Assmy P, Duarte P, Magalhães C. Exploration of the forms of rarity within the arctic ocean from the attitude of a number of methodologies. Microb Ecol. 2021;84:59–72.

    PubMed 

    Google Scholar 

  • Huete-Stauffer TM, Arandia-Gorostidi N, Díaz-Pérez L, Morán XAG. Temperature dependences of development charges and carrying capacities of marine micro organism depart from metabolic theoretical predictions. FEMS Microbiol Ecol. 2015;91:fiv111.

    PubMed 

    Google Scholar 

  • Arandia-Gorostidi N, Huete-Stauffer TM, Alonso-Sáez L, G. Morán XA. Testing the metabolic idea of ecology with marine micro organism: totally different temperature sensitivity of main phylogenetic teams in the course of the spring phytoplankton bloom. Environ Microbiol. 2017;19:4493–505.

    CAS 
    PubMed 

    Google Scholar 

  • Giovannoni SJ, Bibbs L, Cho J-C, Stapels MD, Desiderio R, Vergin KL, et al. Proteorhodopsin within the ubiquitous marine bacterium SAR11. Nature. 2005;438:82–85.

    CAS 
    PubMed 

    Google Scholar 

  • Yilmaz P, Yarza P, Rapp JZ, Glöckner FO. Increasing the world of marine bacterial and archaeal clades. Entrance Microbiol. 2016;6:1524.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pedler BE, Aluwihare LI, Azam F. Single bacterial pressure able to vital contribution to carbon biking within the floor ocean. Proc Natl Acad Sci USA. 2014;111:7202–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pereira O, Hochart C, Boeuf D, Auguet JC, Debroas D, Galand PE. Seasonality of archaeal proteorhodopsin and related Marine Group IIb ecotypes (Ca. Poseidoniales) within the North Western Mediterranean Sea. ISME J. 2020;15:1302–16.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Iverson V, Morris RM, Frazar CD, Berthiaume CT, Morales RL, Armbrust EV. Untangling Genomes from Metagenomes: Revealing an Uncultured Class of Marine Euryarchaeota. Science. 2012;335:587–90.

    CAS 
    PubMed 

    Google Scholar 

  • Pereira O, Hochart C, Auguet JC, Debroas D, Galand PE. Genomic ecology of Marine Group II, the commonest marine planktonic Archaea throughout the floor ocean. MicrobiologyOpen. 2019;8:e00852.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Tully BJ. Metabolic variety inside the globally considerable Marine Group II Euryarchaea gives perception into ecological patterns. Nat Commun. 2019;10:271.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Xie W, Luo H, Murugapiran SK, Dodsworth JA, Chen S, Solar Y, et al. Localized excessive abundance of Marine Group II archaea within the subtropical Pearl River Estuary: implications for his or her area of interest adaptation. Environ Microbiol. 2018;20:734–54.

    CAS 
    PubMed 

    Google Scholar 

  • Jousset A, Bienhold C, Chatzinotas A, Gallien L, Gobet A, Kurm V, et al. The place much less could also be extra: how the uncommon biosphere pulls ecosystems strings. ISME J. 2017;11:853–62.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bernard G, Pathmanathan JS, Lannes R, Lopez P, Bapteste E. Microbial darkish matter investigations: how microbial research rework organic information and empirically sketch a logic of scientific discovery. Genome Biol Evol. 2018;10:707–15.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Carradec Q, Pelletier E, Da Silva C, Alberti A, Seeleuthner Y, Blanc-Mathieu R, et al. A worldwide ocean atlas of eukaryotic genes. Nature Communications. 2018;9:373.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Thomas AM, Segata N. A number of ranges of the unknown in microbiome analysis. BMC Biology. 2019;17:48.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Facebook
    Twitter
    Pinterest
    WhatsApp
    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments