Monday, September 26, 2022
HomeBiochemistryResolving molecular diffusion and aggregation of antibody proteins with megahertz X-ray free-electron...

Resolving molecular diffusion and aggregation of antibody proteins with megahertz X-ray free-electron laser pulses

Facebook
Twitter
Pinterest
WhatsApp

  • Lehmkühler, F. et al. Emergence of anomalous dynamics in comfortable matter probed on the European XFEL. Proc. Natl. Acad. Sci. USA 117, 24110–24116 (2020).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Dallari, F. et al. Microsecond hydrodynamic interactions in dense colloidal dispersions probed on the European XFEL. IUCrJ 8, 775–783 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Dallari, F. et al. Evaluation methods for MHz XPCS on the European XFEL. Appl. Sci. 11, 8037 (2021).

    CAS 
    Article 

    Google Scholar 

  • García de la Torre, J., Huertas, M. L. & Carrasco, B. Calculation of hydrodynamic properties of globular proteins from their atomic-level construction. Biophys. J. 78, 719–730 (2000).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ridgway, D. et al. Coarse-grained molecular simulation of diffusion and response kinetics in a crowded digital cytoplasm. Biophys. J. 94, 3748–3759 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Grimaldo, M., Roosen-Runge, F., Zhang, F., Schreiber, F. & Seydel, T. Dynamics of proteins in resolution. Q. Rev. Biophys. 52, E7 (2019).

    Article 

    Google Scholar 

  • Roosen-Runge, F. et al. Protein self-diffusion in crowded options. Proc. Natl. Acad. Sci. USA 108, 11815–11820 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Von Bülow, S., Siggel, M., Linke, M. & Hummer, G. Dynamic cluster formation determines viscosity and diffusion in dense protein options. Proc. Natl. Acad. Sci. USA 116, 9843–9852 (2019).

    Article 
    CAS 

    Google Scholar 

  • Grimaldo, M. et al. Protein short-time diffusion in a naturally crowded surroundings. J. Phys. Chem. Lett. 10, 1709–1715 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Leeman, M., Choi, J., Hansson, S., Storm, M. U. & Nilsson, L. Proteins and antibodies in serum, plasma, and complete blood-size characterization utilizing asymmetrical circulation field-flow fractionation (AF4). Anal. Bioanal. Chem. 410, 4867–4873 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Myung, J. S. et al. Weak form anisotropy results in a nonmonotonic contribution to crowding, impacting protein dynamics below physiologically related situations. J. Phys. Chem. B 122, 12396–12402 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bucciarelli, S. et al. Dramatic affect of patchy points of interest on short-time protein diffusion below crowded situations. Sci. Adv. 2, e1601432 (2016).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Tang, L. Protein translation inside artificial membraneless organelles. Nat. Strategies 16, 456–456 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Pease, L. F., Elliott, J. T., Tsai, D.-H., Zachariah, M. R. & Tarlov, M. J. Willpower of protein aggregation with differential mobility evaluation: Software to IgG antibody. Biotechnol. Bioeng. 101, 1214–1222 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Martin, N. et al. Prevention of thermally induced aggregation of IgG antibodies by noncovalent interplay with Poly(acrylate) derivatives. Biomacromolecules 15, 2952–2962 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Skar-Gislinge, N. et al. A colloid strategy to self-assembling antibodies. Mol. Pharm. 16, 2394–2404 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Girelli, A. et al. Molecular flexibility of antibodies preserved even within the dense part after macroscopic part separation. Mol. Pharm. 18, 4162–4169 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wang, Y., Li, C. & Pielak, G. J. Results of proteins on protein diffusion. J. Am. Chem. Soc. 132, 9392–9397 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Li, C., Wang, Y. & Pielak, G. J. Translational and rotational diffusion of a small globular protein below crowded situations. J. Phys. Chem. B 113, 13390–13392 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • London, R., Gregg, C. & Matwiyoff, N. Nuclear magnetic resonance of rotational mobility of mouse hemoglobin labeled with (2-13C)histidine. Science 188, 266–268 (1975).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Williams, S., Haggie, P. & Brindle, Okay. 19F NMR measurements of the rotational mobility of proteins in vivo. Biophys. J. 72, 490–498 (1997).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ando, T. & Skolnick, J. Crowding and hydrodynamic interactions probably dominate in vivo macromolecular movement. Proc. Natl. Acad. Sci. USA 107, 18457–18462 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wojcieszyn, J. W., Schlegel, R. A., Wu, E. S. & Jacobson, Okay. A. Diffusion of injected macromolecules throughout the cytoplasm of dwelling cells. Proc. Natl. Acad. Sci. USA 78, 4407–4410 (1981).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Arrio-Dupont, M., Foucault, G., Vacher, M., Devaux, P. F. & Cribier, S. Translational diffusion of globular proteins within the cytoplasm of cultured muscle cells. Biophys. J. 78, 901–907 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Verkman, A. S. Solute and macromolecule diffusion in mobile aqueous compartments. Traits Biochem. Sci. 27, 27–33 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Banks, D. S. & Fradin, C. Anomalous diffusion of proteins as a result of molecular crowding. Biophys. J. 89, 2960–2971 (2005).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Muramatsu, N. & Minton, A. P. Tracer diffusion of globular proteins in concentrated protein options. Proc. Natl. Acad. Sci. USA 85, 2984–2988 (1988).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Dix, J. A. & Verkman, A. Crowding results on diffusion in options and cells. Annu. Rev. Biophys. 37, 247–263 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zimmerman, S. B. & Minton, A. P. Macromolecular crowding: Biochemical, biophysical, and physiological penalties. Annu. Rev. Biophys. Biomol. Struct. 22, 27–65 (1993).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mukherjee, S. Okay., Gautam, S., Biswas, S., Kundu, J. & Chowdhury, P. Okay. Do macromolecular crowding brokers exert solely an excluded quantity impact? A protein solvation examine. J. Phys. Chem. B 119, 14145–14156 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Harada, R., Sugita, Y. & Feig, M. Protein crowding impacts hydration construction and dynamics. J. Am. Chem. Soc. 134, 4842–4849 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Cohen, R. D. & Pielak, G. J. A cell is greater than the sum of its (dilute) components: A quick historical past of quinary construction. Protein Sci. 26, 403–413 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • McConkey, E. H. Molecular evolution, intracellular group, and the quinary construction of proteins. Proc. Natl. Acad. Sci. USA 79, 3236–3240 (1982).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Yu, I. et al. Biomolecular interactions modulate macromolecular construction and dynamics in atomistic mannequin of a bacterial cytoplasm. eLife 5, e19274 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Feig, M. & Sugita, Y. Variable interactions between protein crowders and biomolecular solutes are necessary in understanding mobile crowding. J. Phys. Chem. B 116, 599–605 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cardinaux, F. et al. Cluster-driven dynamical arrest in concentrated lysozyme options. J. Phys. Chem. B 115, 7227–7237 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kowalczyk, P., Ciach, A., Gauden, P. & Terzyk, A. Equilibrium clusters in concentrated lysozyme protein options. J. Colloid Interface Sci. 363, 579–584 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Porcar, L. et al. Formation of the dynamic clusters in concentrated lysozyme protein options. J. Phys. Chem. Lett. 1, 126–129 (2010).

    CAS 
    Article 

    Google Scholar 

  • Liu, Y. et al. Lysozyme protein resolution with an intermediate vary order construction. J. Phys. Chem. B 115, 7238–7247 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Nawrocki, G., Wang, P.-h, Yu, I., Sugita, Y. & Feig, M. Gradual-down in diffusion in crowded protein options correlates with transient cluster formation. J. Phys. Chem. B 121, 11072–11084 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Weiss, M., Elsner, M., Kartberg, F. & Nilsson, T. Anomalous subdiffusion is a measure for cytoplasmic crowding in dwelling cells. Biophys. J. 87, 3518–3524 (2004).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Guigas, G. & Weiss, M. Sampling the cell with anomalous diffusion—the invention of slowness. Biophys. J. 94, 90–94 (2008).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Meisburger, S. P. et al. Breaking the radiation injury restrict with Cryo-SAXS. Biophys. J. 104, 227–236 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hopkins, J. B. & Thorne, R. E. Quantifying radiation injury in biomolecular small-angle X-ray scattering. J. Appl. Crystallogr. 49, 880–890 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Garman, E. F. & Weik, M. X-ray radiation injury to organic macromolecules: Additional insights. J. Synchrotron. Radiat. 24, 1–6 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kuwamoto, S., Akiyama, S. & Fujisawa, T. Radiation injury to a protein resolution, detected by synchrotron X-ray small-angle scattering: Dose-related issues and suppression by cryoprotectants. J. Synchrotron. Radiat. 11, 462–468 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Younger, L. et al. Photon-in/photon-out X-ray free-electron laser research of radiolysis. Appl. Sci. 11, 701 (2021).

    CAS 
    Article 

    Google Scholar 

  • Hawkins, C. L. & Davies, M. J. Era and propagation of radical reactions on proteins. Biochim. Biophys. Acta Bioenerg. 1504, 196–219 (2001).

    CAS 
    Article 

    Google Scholar 

  • Khalack, J. M. & Lyubartsev, A. P. Solvation construction of hydroxyl radical by car-parrinello molecular dynamics. J. Phys. Chem. A 109, 378–386 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Madsen, A. et al. Supplies imaging and dynamics (MID) instrument on the European X-ray free-electron laser facility. J. Synchrotron. Radiat. 28, 637–649 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Da Vela, S. et al. Efficient interactions and colloidal stability of bovine γ-globulin in resolution. J. Phys. Chem. B 121, 5759–5769 (2017).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Girelli, A. et al. Microscopic dynamics of liquid–liquid part separation and area coarsening in a protein resolution revealed by X-ray photon correlation spectroscopy. Phys. Rev. Lett. 126, 138004 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Allahgholi, A. et al. The adaptive achieve integrating pixel detector on the European XFEL. J. Synchrotron. Radiat. 26, 74–82 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Falus, P., Lurio, L. B. & Mochrie, S. G. J. Optimizing the signal-to-noise ratio for X-ray photon correlation spectroscopy. J. Synchrotron. Radiat. 13, 253–259 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sutton, M., Laaziri, Okay., Livet, F. & Bley, F. Utilizing coherence to measure two-time correlation features. Choose. Categorical 11, 2268 (2003).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cipelletti, L., Bissig, H., Trappe, V., Ballesta, P. & Mazoyer, S. Time-resolved correlation: A brand new software for finding out temporally heterogeneous dynamics. J. Phys. Condens. Matter 15, S257–S262 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Hruszkewycz, S. O. et al. Excessive distinction X-ray speckle from atomic-scale order in liquids and glasses. Phys. Rev. Lett. 109, 185502 (2012).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Begam, N. et al. Kinetics of community formation and heterogeneous dynamics of an egg white gel revealed by coherent X-ray scattering. Phys. Rev. Lett. 126, 098001 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ruta, B. et al. Wave-vector dependence of the dynamics in supercooled metallic liquids. Phys. Rev. Lett. 125, 055701 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Guo, H. et al. Entanglement-controlled subdiffusion of nanoparticles inside concentrated polymer options. Phys. Rev. Lett. 109, 055901 (2012).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • De la Mora, E. et al. Radiation injury and dose limits in serial synchrotron crystallography at cryo- and room temperatures. Proc. Natl. Acad. Sci. USA 117, 4142–4151 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Southworth-Davies, R. J., Medina, M. A., Carmichael, I. & Garman, E. F. Commentary of decreased radiation injury at increased dose charges in room temperature protein crystallography. Construction 15, 1531–1541 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Warkentin, M. A., Atakisi, H., Hopkins, J. B., Walko, D. & Thorne, R. E. Lifetimes and spatio-temporal response of protein crystals in intense X-ray microbeams. IUCrJ 4, 785–794 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Schwarz, H. A. Purposes of the spur diffusion mannequin to the radiation chemistry of aqueous options. J. Phys. Chem. 73, 1928–1937 (1969).

    CAS 
    Article 

    Google Scholar 

  • Buxton, G. Radiation Chemistry: Ideas and Purposes (Verlag Chemie Publishers, 1987).

  • Attri, P. et al. Era mechanism of hydroxyl radical species and its lifetime prediction in the course of the plasma-initiated ultraviolet (UV) photolysis. Sci. Rep. 5, 9332 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Baba, Okay. et al. Quantitative estimation of observe phase yields of water radiolysis species below heavy ions round Bragg peak energies utilizing Geant4-DNA. Sci. Rep. 11, 1524 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Northrup, S. H. & Erickson, H. P. Kinetics of protein–protein affiliation defined by Brownian dynamics pc simulation. Proc. Natl. Acad. Sci. USA 89, 3338–3342 (1992).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kubelka, J., Hofrichter, J. & Eaton, W. A. The protein folding ’velocity restrict’. Curr. Opin. Struct. Biol. 14, 76–88 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Nass, Okay. Radiation injury in protein crystallography at X-ray free-electron lasers. Acta Crystallogr. D Struct. Biol. 75, 211–218 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Nass, Okay. et al. Indications of radiation injury in ferredoxin microcrystals utilizing high-intensity X-FEL beams. J. Synchrotron. Rad. 22, 225–238 (2015).

    CAS 
    Article 

    Google Scholar 

  • Schlichting, I. Serial femtosecond crystallography: The primary 5 years. IUCrJ 2, 246–255 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Neutze, R., Wouts, R., van der Spoel, D., Weckert, E. & Hajdu, J. Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406, 752–757 (2000).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chushkin, Y. Deciphering the intrinsic dynamics from the beam-induced atomic motions in oxide glasses. J. Synchrotron. Radiat. 27, 1247–1252 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ragulskaya, A. et al. Interaction between kinetics and dynamics of liquid-liquid part separation in a protein resolution revealed by coherent X-ray spectroscopy. J. Phys. Chem. Lett. 12, 7085–7090 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Möller, J., Sprung, M., Madsen, A. & Gutt, C. X-ray photon correlation spectroscopy of protein dynamics at practically diffraction-limited storage rings. IUCrJ 6, 794–803 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Chapman, H. N. et al. Femtosecond X-ray protein nanocrystallography. Nature 470, 73–77 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hubbell, J. H. & Seltzer, S. M. Tables of X-Ray Mass Attenuation Coefficients and Mass Vitality-Absorption Coefficients (model 1.4). [Online] Out there: http://physics.nist.gov/xaamdi. (Nationwide Institute of Requirements and Expertise, Gaithersburg, MD, 2004).

  • Facebook
    Twitter
    Pinterest
    WhatsApp
    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments