Wednesday, September 28, 2022
HomeBiotechnologyQuantitative evaluation of CRISPR/Cas9-mediated provirus deletion in blue egg layer hen PGCs...

Quantitative evaluation of CRISPR/Cas9-mediated provirus deletion in blue egg layer hen PGCs by digital PCR

Facebook
Twitter
Pinterest
WhatsApp

  • Schuster, F. et al. CRISPR/Cas12a mediated knock-in of the polled Celtic variant to provide a polled genotype in dairy cattle. Sci. Rep. 10, 13570. https://doi.org/10.1038/s41598-020-70531-y (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kurtz, S. et al. Knockout of the HMG area of the porcine SRY gene causes intercourse reversal in gene-edited pigs. Proc. Natl. Acad. Sci. USA 118, e2008743118. https://doi.org/10.1073/pnas.2008743118 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Hein, R. et al. Triple (GGTA1, CMAH, B2M) modified pigs expressing an SLA class I(low) phenotype—Results on immune standing and susceptibility to human immune responses. Am. J. Transplant. 20, 988–998. https://doi.org/10.1111/ajt.15710 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Bosch, P. et al. Exogenous enzymes improve transgenesis and genetic engineering of cattle. Cell Mol. Life Sci. 72, 1907–1929. https://doi.org/10.1007/s00018-015-1842-1 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • McFarlane, G. R., Salvesen, H. A., Sternberg, A. & Lillico, S. G. On-farm livestock genome enhancing utilizing leading edge reproductive applied sciences. Entrance. Maintain. Meals Syst. https://doi.org/10.3389/fsufs.2019.00106 (2019).

    Article 

    Google Scholar 

  • Perisse, I. V., Fan, Z., Singina, G. N., White, Ok. L. & Polejaeva, I. A. Enhancements in gene enhancing know-how enhance its purposes in livestock. Entrance. Genet. 11, 614688. https://doi.org/10.3389/fgene.2020.614688 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Kalds, P. et al. Sheep and goat genome engineering: From random transgenesis to the CRISPR Period. Entrance. Genet. 10, 750. https://doi.org/10.3389/fgene.2019.00750 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Woodcock, M. E., Idoko-Akoh, A. & McGrew, M. J. Gene enhancing in birds takes flight. Mamm. Genome 28, 315–323. https://doi.org/10.1007/s00335-017-9701-z (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sid, H. & Schusser, B. Functions of gene enhancing in chickens: A brand new period is on the horizon. Entrance. Genet. 9, 456. https://doi.org/10.3389/fgene.2018.00456 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rieblinger, B. et al. Cas9-expressing chickens and pigs as assets for genome enhancing in livestock. Proc. Natl. Acad. Sci. USA 118, e2022562118. https://doi.org/10.1073/pnas.2022562118 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hellmich, R. et al. Buying resistance towards a retroviral an infection through CRISPR/Cas9 focused genome enhancing in a business hen line. Entrance. Genome Ed. https://doi.org/10.3389/fgeed.2020.00003 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Oishi, I., Yoshii, Ok., Miyahara, D. & Tagami, T. Environment friendly manufacturing of human interferon beta within the white of eggs from ovalbumin gene-targeted hens. Sci. Rep. 8, 10203. https://doi.org/10.1038/s41598-018-28438-2 (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ballantyne, M. et al. Direct allele introgression into pure hen breeds utilizing Sire Dam surrogate (SDS) mating. Nat. Commun. 12, 659. https://doi.org/10.1038/s41467-020-20812-x (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, G. D. et al. Era of myostatin-knockout chickens mediated by D10A-Cas9 nickase. FASEB J. 34, 5688–5696. https://doi.org/10.1096/fj.201903035R (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Bellairs, R. & Osmond, M. The Atlas of Chick Improvement (Elsevier Tutorial Press, 2005).

    Google Scholar 

  • Whyte, J. et al. FGF, Insulin, and SMAD signaling cooperate for avian primordial germ cell self-renewal. Stem Cell Rep. 5, 1171–1182. https://doi.org/10.1016/j.stemcr.2015.10.008 (2015).

    CAS 
    Article 

    Google Scholar 

  • van de Lavoir, M. C. et al. Germline transmission of genetically modified primordial germ cells. Nature 441, 766–769. https://doi.org/10.1038/nature04831 (2006).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Panda, S. Ok. & McGrew, M. J. Genome enhancing of avian species: implications for animal use and welfare. Lab Anim. https://doi.org/10.1177/0023677221998400 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Petersen, B. & Niemann, H. Molecular scissors and their utility in genetically modified cattle. Transgenic Res. 24, 381–396. https://doi.org/10.1007/s11248-015-9862-z (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Gaj, T., Gersbach, C. A. & Barbas, C. F. third. ZFN, TALEN, and CRISPR/Cas-based strategies for genome engineering. Traits Biotechnol. 31, 397–405. https://doi.org/10.1016/j.tibtech.2013.04.004 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Danner, E. et al. Management of gene enhancing by manipulation of DNA restore mechanisms. Mamm. Genome 28, 262–274. https://doi.org/10.1007/s00335-017-9688-5 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Ran, F. A. et al. Genome engineering utilizing the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308. https://doi.org/10.1038/nprot.2013.143 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jinek, M. et al. RNA-programmed genome enhancing in human cells. Elife 2, e00471. https://doi.org/10.7554/eLife.00471 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Oishi, I., Yoshii, Ok., Miyahara, D., Kagami, H. & Tagami, T. Focused mutagenesis in hen utilizing CRISPR/Cas9 system. Sci. Rep. 6, 23980. https://doi.org/10.1038/srep23980 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Park, T. S., Park, J., Lee, J. H., Park, J. W. & Park, B. C. Disruption of G0/G1 change gene 2 (G0S2) lowered belly fats deposition and altered fatty acid composition in hen. FASEB J. 33, 1188–1198. https://doi.org/10.1096/fj.201800784R (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Koslova, A. et al. Exact CRISPR/Cas9 enhancing of the NHE1 gene renders chickens immune to the J subgroup of avian leukosis virus. Proc. Natl. Acad. Sci. USA 117, 2108–2112. https://doi.org/10.1073/pnas.1913827117 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ihry, R. J. et al. p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Nat. Med. 24, 939–946. https://doi.org/10.1038/s41591-018-0050-6 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Bloom, J. C., Loehr, A. R., Schimenti, J. C. & Weiss, R. S. Germline genome safety: Implications for gamete high quality and germ cell tumorigenesis. Andrology 7, 516–526. https://doi.org/10.1111/andr.12651 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baarends, W., Laan, R. V. D. & Grootegoed, J. DNA restore mechanisms and gametogenesis. Copy 121, 31. https://doi.org/10.1530/rep.0.1210031 (2001).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Wragg, D. et al. Endogenous retrovirus EAV-HP linked to blue egg phenotype in Mapuche fowl. PLoS ONE 8, e71393. https://doi.org/10.1371/journal.pone.0071393 (2013).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Z. et al. An EAV-HP insertion in 5’ Flanking area of SLCO1B3 causes blue eggshell within the hen. PLoS Genet. 9, e1003183. https://doi.org/10.1371/journal.pgen.1003183 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, Z. et al. Affiliation between the methylation statuses at CpG websites within the promoter area of the SLCO1B3, RNA expression and colour change in blue eggshells in Lushi chickens. Entrance. Genet. 10, 161. https://doi.org/10.3389/fgene.2019.00161 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kato-Inui, T., Takahashi, G., Hsu, S. & Miyaoka, Y. Clustered commonly interspaced quick palindromic repeats (CRISPR)/CRISPR-associated protein 9 with improved proof-reading enhances homology-directed restore. Nucleic Acids Res. 46, 4677–4688. https://doi.org/10.1093/nar/gky264 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kleinstiver, B. P. et al. Excessive-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target results. Nature 529, 490–495. https://doi.org/10.1038/nature16526 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sternberg, S. H., LaFrance, B., Kaplan, M. & Doudna, J. A. Conformational management of DNA goal cleavage by CRISPR–Cas9. Nature 527, 110–113. https://doi.org/10.1038/nature15544 (2015).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Knight, S. C. et al. Dynamics of CRISPR-Cas9 genome interrogation in dwelling cells. Science 350, 823–826. https://doi.org/10.1126/science.aac6572 (2015).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Majumdar, N., Wessel, T. & Marks, J. Digital PCR modeling for maximal sensitivity, dynamic vary and measurement precision. PLoS ONE 10, e0118833. https://doi.org/10.1371/journal.pone.0118833 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Demeke, T. & Dobnik, D. Crucial evaluation of digital PCR for the detection and quantification of genetically modified organisms. Anal. Bioanal. Chem. 410, 4039–4050. https://doi.org/10.1007/s00216-018-1010-1 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Altgilbers, S., Klein, S., Dierks, C., Weigend, S. & Kues, W. A. Cultivation and characterization of primordial germ cells from blue layer hybrids (Araucana crossbreeds) and technology of germline chimeric chickens. Sci. Rep. 11, 12923. https://doi.org/10.1038/s41598-021-91490-y (2021).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cooper, C. A., Doran, T. J., Challagulla, A., Tizard, M. L. V. & Jenkins, Ok. A. Modern approaches to genome enhancing in avian species. J. Anim. Sci. Biotechnol. 9, 15. https://doi.org/10.1186/s40104-018-0231-7 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Idoko-Akoh, A., Taylor, L., Sang, H. M. & McGrew, M. J. Excessive constancy CRISPR/Cas9 will increase exact monoallelic and biallelic enhancing occasions in primordial germ cells. Sci. Rep. 8, 15126. https://doi.org/10.1038/s41598-018-33244-x (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kulcsar, P. I. et al. Crossing enhanced and excessive constancy SpCas9 nucleases to optimize specificity and cleavage. Genome Biol. 18, 190. https://doi.org/10.1186/s13059-017-1318-8 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, D. et al. Completely matched 20-nucleotide information RNA sequences allow strong genome enhancing utilizing high-fidelity SpCas9 nucleases. Genome Biol. 18, 191. https://doi.org/10.1186/s13059-017-1325-9 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Haeussler, M. et al. Analysis of off-target and on-target scoring algorithms and integration into the information RNA choice device CRISPOR. Genome Biol. 17, 148. https://doi.org/10.1186/s13059-016-1012-2 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bennett, E. P. et al. INDEL detection, the “Achilles heel” of exact genome enhancing: A survey of strategies for correct profiling of gene enhancing induced indels. Nucleic Acids Res. 48, 11958–11981. https://doi.org/10.1093/nar/gkaa975 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vouillot, L., Thelie, A. & Pollet, N. Comparability of T7E1 and surveyor mismatch cleavage assays to detect mutations triggered by engineered nucleases. G3 (Bethesda) 5, 407–415. https://doi.org/10.1534/g3.114.015834 (2015).

    Article 
    PubMed Central 

    Google Scholar 

  • Zischewski, J., Fischer, R. & Bortesi, L. Detection of on-target and off-target mutations generated by CRISPR/Cas9 and different sequence-specific nucleases. Biotechnol. Adv. 35, 95–104. https://doi.org/10.1016/j.biotechadv.2016.12.003 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Kim, Y. et al. A library of TAL effector nucleases spanning the human genome. Nat. Biotechnol. 31, 251–258. https://doi.org/10.1038/nbt.2517 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Findlay, S. D., Vincent, Ok. M., Berman, J. R. & Postovit, L. M. A digital PCR-based technique for environment friendly and extremely particular screening of genome edited cells. PLoS ONE 11, e0153901. https://doi.org/10.1371/journal.pone.0153901 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hunter, M. E. et al. Detection limits of quantitative and digital PCR assays and their affect in presence–absence surveys of environmental DNA. Mol. Ecol. Resour. 17, 221–229. https://doi.org/10.1111/1755-0998.12619 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Miyaoka, Y., Mayerl, S. J., Chan, A. H. & Conklin, B. R. Digital PCR Strategies in Molecular Biology. Chap. 20. 349–362 (2018).

  • Xiang, W. et al. Identification of a hen (Gallus gallus) endogenous reference gene (Actb) and its utility in meat adulteration. Meals Chem. 234, 472–478. https://doi.org/10.1016/j.foodchem.2017.05.038 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Mock, U., Hauber, I. & Fehse, B. Digital PCR to evaluate gene-editing frequencies (GEF-dPCR) mediated by designer nucleases. Nat. Protoc. 11, 598–615. https://doi.org/10.1038/nprot.2016.027 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Peng, C. et al. Correct detection and analysis of the gene-editing frequency in crops utilizing droplet digital PCR. Entrance. Plant Sci. https://doi.org/10.3389/fpls.2020.610790 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sedlak, R. H. et al. Digital detection of endonuclease mediated gene disruption within the HIV provirus. Sci. Rep. 6, 20064. https://doi.org/10.1038/srep20064 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Watry, H. L. et al. Speedy, exact quantification of huge DNA excisions and inversions by ddPCR. Sci. Rep. 10, 14896. https://doi.org/10.1038/s41598-020-71742-z (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sacco, M. A., Flannery, D. M., Howes, Ok. & Venugopal, Ok. Avian endogenous retrovirus EAV-HP shares areas of id with avian leukosis virus subgroup J and the avian retrotransposon ART-CH. J. Virol. 74, 1296–1306. https://doi.org/10.1128/jvi.74.3.1296-1306.2000 (2000).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sacco, M. A., Howes, Ok. & Venugopal, Ok. Intact EAV-HP endogenous retrovirus in Sonnerat’s jungle fowl. J. Virol. 75, 2029–2032. https://doi.org/10.1128/jvi.75.4.2029-2032.2001 (2001).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sacco, M. A., Howes, Ok., Smith, L. P. & Nair, V. Ok. Assessing the roles of endogenous retrovirus EAV-HP in avian leukosis virus subgroup J emergence and tolerance. J. Virol. 78, 10525–10535. https://doi.org/10.1128/JVI.78.19.10525-10535.2004 (2004).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Eid, J. et al. Actual-time DNA sequencing from single polymerase molecules. Science 323, 133–138. https://doi.org/10.1126/science.1162986 (2009).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Clarke, J. et al. Steady base identification for single-molecule nanopore DNA sequencing. Nat. Nanotechnol. 4, 265–270. https://doi.org/10.1038/nnano.2009.12 (2009).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Collarini, E. J., Leighton, P. A. & Van de Lavoir, M. C. Manufacturing of transgenic chickens utilizing cultured primordial germ cells and gonocytes. Strategies Mol. Biol. 403–430, 2019. https://doi.org/10.1007/978-1-4939-8831-0_24 (1874).

    CAS 
    Article 

    Google Scholar 

  • Toni, L. S. et al. Optimization of phenol-chloroform RNA extraction. MethodsX 5, 599–608. https://doi.org/10.1016/j.mex.2018.05.011 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Facebook
    Twitter
    Pinterest
    WhatsApp
    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments