Wednesday, September 28, 2022
HomeMicrobiologyPseudomonas putida mediates bacterial killing, biofilm invasion and biocontrol with a kind...

Pseudomonas putida mediates bacterial killing, biofilm invasion and biocontrol with a kind IVB secretion system

Facebook
Twitter
Pinterest
WhatsApp

  • Syed Ab Rahman, S. F., Singh, E., Pieterse, C. M. J. & Schenk, P. M. Rising microbial biocontrol methods for plant pathogens. Plant Sci. 267, 102–111 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Berendsen, R. L., Pieterse, C. M. J. & Bakker, P. A. H. M. The rhizosphere microbiome and plant well being. Developments Plant Sci. 17, 478–486 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Prasad, M., Srinivasan, R., Chaudhary, M., Choudhary, M. & Jat, L. Okay. PGPR Amelioration in Sustainable Agriculture (eds Singh, A. Okay., Kumar, A. & Singh, P. W.) Ch. 7 (Elsevier, 2019).

  • Raymaekers, Okay., Ponet, L., Holtappels, D., Berckmans, B. & Cammue, B. P. A. Screening for novel biocontrol brokers relevant in plant illness administration – a assessment. Biol. Management 144, 104–240 (2020).

    Google Scholar 

  • Parnell, J. J. et al. From the lab to the farm: an industrial perspective of plant helpful microorganisms. Entrance. Plant Sci. 7, 1110 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Timmusk, S., Behers, L., Muthoni, J., Muraya, A. & Aronsson, A. C. Views and challenges of microbial software for crop enchancment. Entrance. Plant Sci. 8, 49 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hart, M. M., Antunes, P. M., Chaudhary, V. B. & Abbott, L. Okay. Fungal inoculants within the subject: is the reward better than the chance? Funct. Ecol. 32, 126–135 (2018).

    Google Scholar 

  • Mitter, B., Brader, G., Pfaffenbichler, N. & Sessitsch, A. Subsequent era microbiome purposes for crop manufacturing – limitations and the necessity of knowledge-based options. Curr. Opin. Microbiol. 49, 59–65 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Compant, S., Clément, C. & Sessitsch, A. Plant growth-promoting micro organism within the rhizo- and endosphere of vegetation: their position, colonization, mechanisms concerned and prospects for utilization. Soil Biol. Biochem. 42, 669–678 (2010).

    CAS 

    Google Scholar 

  • Pandin, C., Le Coq, D., Canette, A., Aymerich, S. & Briandet, R. Ought to the biofilm mode of life be considered for microbial biocontrol brokers? Microb. Biotechnol. 10, 719–734 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Corridor-Stoodley, L., Costerton, J. W. & Stoodley, P. Bacterial biofilms: from the pure surroundings to infectious ailments. Nat. Rev. Microbiol. 2, 95–108 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Monds, R. D. & O’Toole, G. A. The developmental mannequin of microbial biofilms: ten years of a paradigm up for assessment. Developments Microbiol. 17, 73–87 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Nadell, C. D., Drescher, Okay., Wingreen, N. S. & Bassler, B. L. Extracellular matrix construction governs invasion resistance in bacterial biofilms. ISME J. 9, 1700–1709 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Flemming, H. C. et al. Biofilms: an emergent type of bacterial life. Nat. Rev. Microbiol. 14, 563–575 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Bakker, P. A. H. M. et al. The soil-borne id and microbiome-assisted agriculture: trying again to the longer term. Mol. Plant 13, 1394–1401 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Rendueles, O. & Ghigo, J.-M. Mechanisms of competitors in biofilm communities. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.MB-0009-2014 (2015).

  • Rendueles, O. & Ghigo, J.-M. Multi-species biofilms: the way to keep away from unfriendly neighbors. FEMS Microbiol. Rev. 36, 972–989 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Benz, J. & Meinhart, A. Antibacterial effector/immunity programs: it’s simply the tip of the iceberg. Curr. Opin. Microbiol. 17, 1–10 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Peterson, S. B., Bertolli, S. Okay. & Mougous, J. D. The central position of interbacterial antagonism in bacterial life. Curr. Biol. 30, 203–214 (2020).

    Google Scholar 

  • Klein, T. A., Ahmad, S. & Whitney, J. C. Contact-dependent interbacterial antagonism mediated by protein secretion machines. Developments Microbiol. 28, 387–400 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Granato, E. T., Meiller-Legrand, T. A. & Foster, Okay. R. The evolution and ecology of bacterial warfare. Curr. Biol. 29, R521–R537 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Souza, D. P. et al. Bacterial killing by way of a kind IV secretion system. Nat. Commun. 6, 6453 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Bayer-Santos, E. et al. The opportunistic pathogen Stenotrophomonas maltophilia makes use of a kind IV secretion system for interbacterial killing. PLoS Pathog. 15, e1007651 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sgro, G. G. et al. Micro organism-killing sort IV secretion programs. Entrance. Microbiol. 10, 1078 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Backert, S. & Grohmann, E. (eds) Sort IV Secretion in Gram-Damaging and Gram-Constructive Micro organism, Present Matters in Microbiology and Immunology (Springer, 2017).

  • Voth, D. E., Broederdorf, L. J. & Graham, J. Bacterial sort IV secretion programs: versatile virulence machines. Future Microbiol. 7, 241–257 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Christie, P. J. & Vogel, J. P. Bacterial sort IV secretion: conjugation programs tailored to ship effector molecules to host cells. Developments Microbiol. 8, 354–360 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Steidle, A. et al. Identification and characterization of an N-acylhomoserine lactone-dependent quorum-sensing system in Pseudomonas putida pressure IsoF. Appl. Environ. Microbiol. 68, 6371–6382 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Steidle, A. et al. Visualization of N-acylhomoserine lactone-mediated cell-cell communication between micro organism colonizing the tomato rhizosphere. Appl. Environ. Microbiol. 67, 5761–5770 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nagai, H. & Kubori, T. Sort IVB secretion programs of Legionella and different Gram-negative micro organism. Entrance. Microbiol. 2, 136 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, M. et al. ICEberg 2.0: an up to date database of bacterial integrative and conjugative components. Nucleic Acids Res. 47, D660–D665 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Yang, X., Lengthy, M. & Shen, X. Effector–immunity pairs present the T6SS nanomachine its offensive and defensive capabilities. Molecules 23, 1009 (2018).

    PubMed Central 

    Google Scholar 

  • Dong, T. G., Ho, B. T., Yoder-Himes, D. R. & Mekalanos, J. J. Identification of T6SS-dependent effector and immunity proteins by Tn-seq in Vibrio cholerae. Proc. Natl Acad. Sci. USA 110, 2623–2628 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nolan, L. M. et al. Identification of Tse8 as a Sort VI secretion system toxin from Pseudomonas aeruginosa that targets the bacterial transamidosome to inhibit protein synthesis in prey cells. Nat. Microbiol. 6, 1199–1210 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, H. et al. Structural foundation for effector protein recognition by the Dot/Icm Sort IVB coupling protein advanced. Nat. Commun. 11, 2623 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Krishna Kumar, R. et al. Droplet printing reveals the significance of micron-scale construction for bacterial ecology. Nat. Commun. 12, 857 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lowe-Energy, T. M., Khokhani, D. & Allen, C. How Ralstonia solanacearum exploits and thrives within the flowing plant xylem surroundings. Developments Microbiol. 26, 929–942 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Xue, H., Lozano-Durán, R. & Macho, A. P. Insights into the foundation invasion by the plant pathogenic bacterium Ralstonia solanacearum. Vegetation 9, 516 (2020).

    CAS 
    PubMed Central 

    Google Scholar 

  • Schuhegger, R. et al. Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone-producing rhizosphere micro organism. Plant Cell Environ. 29, 909–918 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Bernal, P., Allsopp, L. P., Filloux, A. & Llamas, M. A. The Pseudomonas putida T6SS is a plant warden in opposition to phytopathogens. ISME J. 11, 972–987 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Basler, M. & Mekalanos, J. J. Sort 6 secretion dynamics inside and between bacterial cells. Science 337, 815 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ho, B. T. et al. Sort 6 secretion system-mediated immunity to sort 4 secretion system-mediated gene switch. Science 342, 250–253 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Basler, M., Ho, B. T. & Mekalanos, J. J. Tit-for-tat: Sort VI secretion system counterattack throughout bacterial cell-cell interactions. Cell 152, 884–894 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stolle, A. S., Meader, B. T., Toska, J. & Mekalanos, J. J. Endogenous membrane stress induces T6SS exercise in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 118, e2018365118 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Kuiper, I. et al. Characterization of two Pseudomonas putida lipopeptide biosurfactants, putisolvin I and II, which inhibit biofilm formation and break down present biofilms. Mol. Microbiol. 51, 97–113 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Cárcamo-Oyarce, G., Lumjiaktase, P., Kümmerli, R. & Eberl, L. Quorum sensing triggers the stochastic escape of particular person cells from Pseudomonas putida biofilms. Nat. Commun. 6, 5945 (2015).

    PubMed 

    Google Scholar 

  • Pandit, A., Adholeya, A., Cahill, D., Brau, L. & Kochar, M. Microbial biofilms in nature: unlocking their potential for agricultural purposes. J. Appl. Microbiol. 129, 199–211 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Zhang, R., Vivanco, J. M. & Shen, Q. The unseen rhizosphere root–soil–microbe interactions for crop manufacturing. Curr. Opin. Microbiol. 37, 8–14 (2017).

    PubMed 

    Google Scholar 

  • Clark, D. J. & Maaløe, O. DNA replication and the division cycle in Escherichia coli. J. Mol. Biol. 23, 99–112 (1967).

    CAS 

    Google Scholar 

  • Lambertsen, L., Sternberg, C. & Molin, S. Mini-Tn7 transposons for site-specific tagging of micro organism with fluorescent proteins. Environ. Microbiol. 6, 726–732 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Choi, Okay.-H. & Schweizer, H. P. Mini-Tn7 insertion in micro organism with single attTn7 websites: instance Pseudomonas aeruginosa. Nat. Protoc. 1, 153–161 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Aguilar, C., Schmid, N., Lardi, M., Pessi, G. & Eberl, L. The IclR-family regulator BapR controls biofilm formation in B. cenocepacia H111. PLoS ONE 9, e92920 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Huber, B. et al. Genetic evaluation of features concerned within the late levels of biofilm growth in Burkholderia cepacia H111. Mol. Microbiol. 46, 411–426 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • de Lorenzo, V. & Timmis, Okay. N. Evaluation and building of steady phenotypes in gram-negative micro organism with Tn5- and Tn10-derived minitransposons. Strategies Enzymol. 235, 386–405 (1994).

    CAS 
    PubMed 

    Google Scholar 

  • Espinosa-Urgel, M., Salido, A. & Ramos, J. L. Genetic evaluation of features concerned in adhesion of Pseudomonas putida to seeds. J. Bacteriol. 182, 2363–2369 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schneider, C. A., Rasband, W. S. & Eliceiri, Okay. W. NIH Picture to ImageJ: 25 years of picture evaluation. Nat. Strategies 9, 671–675 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Flannagan, R. S., Linn, T. & Valvano, M. A. A system for the development of focused unmarked gene deletions within the genus Burkholderia. Environ. Microbiol. 10, 1652–1660 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Schägger, H. Tricine–SDS-PAGE. Nature Protoc. 1, 16–22 (2006).

    Google Scholar 

  • Darling, A. C. E., Mau, B., Blattner, F. R. & Perna, N. T. Mauve: a number of alignment of conserved genomic sequence with rearrangements. Genome Res. 14, 1394–1403 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Medema, M. H., Takano, E. & Breitling, R. Detecting sequence homology on the gene cluster degree with MultiGeneBlast. Mol. Biol. Evol. 30, 1218–1223 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gallagher, L. A., Shendure, J. & Manoil, C. Genome-scale identification of resistance features in Pseudomonas aeruginosa utilizing Tn-seq. mBio 2, e00315-10 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Higgins, S., Gualdi, S., Pinto-Carbó, M. & Eberl, L. Copper resistance genes of Burkholderia cenocepacia H111 recognized by transposon sequencing. Environ. Microbiol. Rep. 12, 241–249 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a versatile trimmer for Illumina sequence information. Bioinformatics 30, 2114–2120 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. https://doi.org/10.14806/ej.17.1.200 (2011).

  • Solaimanpour, S., Sarmiento, F. & Mrázek, J. Tn-seq explorer: a device for evaluation of high-throughput sequencing information of transposon mutant libraries. PLoS ONE 10, e0126070 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Langmead, B. & Salzberg, S. L. Quick gapped-read alignment with Bowtie 2. Nat. Strategies 9, 357–359 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Christensen, B. B. et al. Molecular instruments for examine of biofilm physiology. Strategies Enzymol. 310, 20–42 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • Heydorn, A. et al. Experimental reproducibility in flow-chamber biofilms. Microbiology 146, 2409–2415 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Bulgarelli, D. et al. Revealing construction and meeting cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488, 91–95 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Schindelin, J. et al. Fiji: an open-source platform for biological-image evaluation. Nat. Strategies 9, 676–682 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Liang, Y. et al. A nondestructive methodology to estimate the chlorophyll content material of Arabidopsis seedlings. Plant Strategies 13, 26 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lichtenthaler, H. Okay. & Wellburn, A. R. Determinations of whole carotenoids and chlorophylls a and b of leaf extracts in several solvents. Biochem. Soc. Trans. 11, 591–592 (1983).

    CAS 

    Google Scholar 

  • Medina, C. & López-Baena, F. J. (eds) Host-Pathogen Interactions, Strategies and Protocols (Springer, 2018).

  • Chetrit, D., Hu, B., Christie, P. J., Roy, C. R. & Liu, J. A novel cytoplasmic ATPase advanced defines the Legionella pneumophila sort IV secretion channel. Nat. Microbiol. 3, 678–686 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Facebook
    Twitter
    Pinterest
    WhatsApp
    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments