Monday, September 26, 2022
HomeBiochemistryProtein condensation ailments: therapeutic alternatives

Protein condensation ailments: therapeutic alternatives

Facebook
Twitter
Pinterest
WhatsApp

  • Alberts, B. Molecular Biology of the Cell sixth edn (Garland Science, 2015).

  • Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. Okay. Biomolecular condensates: organizers of mobile biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brangwynne, C. P. et al. Germline P granules are liquid droplets that localize by managed dissolution/condensation. Science 324, 1729–1732 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Fuxreiter, M. & Vendruscolo, M. Generic nature of the condensed states of proteins. Nat. Cell Biol. 23, 587–594 (2021). This text means that the liquid-like state of proteins must be thought of as a elementary state of proteins, alongside with the native state and the amyloid state.

    CAS 
    PubMed 

    Google Scholar 

  • Knowles, T. P., Vendruscolo, M. & Dobson, C. M. The amyloid state and its affiliation with protein misfolding ailments. Nat. Rev. Mol. Cell Biol. 15, 384–396 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Wu, H. Greater-order assemblies in a brand new paradigm of sign transduction. Cell 153, 287–292 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fowler, D. M., Koulov, A. V., Balch, W. E. & Kelly, J. W. Practical amyloid–from micro organism to people. Traits Biochem. Sci. 32, 217–224 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Hardenberg, M., Horvath, A., Ambrus, V., Fuxreiter, M. & Vendruscolo, M. Widespread prevalence of the droplet state of proteins within the human proteome. Proc. Natl Acad. Sci. USA 117, 33254–33262 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vecchi, G. et al. Proteome-wide statement of the phenomenon of life on the sting of solubility. Proc. Natl Acad. Sci. USA 117, 1015–1020 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Lyon, A. S., Peeples, W. B. & Rosen, M. Okay. A framework for understanding the capabilities of biomolecular condensates throughout scales. Nat. Rev. Mol. Cell Biol. 22, 215–235 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Stoeger, T., Battich, N. & Pelkmans, L. Passive noise filtering by mobile compartmentalization. Cell 164, 1151–1161 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Fowler, D. M. et al. Practical amyloid formation inside mammalian tissue. PLoS Biol. 4, e6 (2006).

    PubMed 

    Google Scholar 

  • Du, M. & Chen, Z. J. DNA-induced liquid part condensation of cGAS prompts innate immune signaling. Science 361, 704–709 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Case, L. B., Zhang, X., Ditlev, J. A. & Rosen, M. Okay. Stoichiometry controls exercise of phase-separated clusters of actin signaling proteins. Science 363, 1093–1097 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schaefer, Okay. N. & Peifer, M. Wnt/Beta-catenin signaling regulation and a job for biomolecular condensates. Dev. Cell 48, 429–444 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shimobayashi, S. F., Ronceray, P., Sanders, D. W., Haataja, M. P. & Brangwynne, C. P. Nucleation panorama of biomolecular condensates. Nature 599, 503–506 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Woodruff, J. B. et al. The centrosome is a selective condensate that nucleates microtubules by concentrating tubulin. Cell 169, 1066–1077 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Kilic, S. et al. Section separation of 53BP1 determines liquid‐like conduct of DNA restore compartments. EMBO J. 38, e101379 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Larson, A. G. et al. Liquid droplet formation by HP1α suggests a job for part separation in heterochromatin. Nature 547, 236–240 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lu, A. et al. Unified polymerization mechanism for the meeting of ASC-dependent inflammasomes. Cell 156, 1193–1206 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hou, F. et al. MAVS types purposeful prion-like aggregates to activate and propagate antiviral innate immune response. Cell 146, 448–461 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alberti, S. & Hyman, A. A. Biomolecular condensates on the nexus of mobile stress, protein aggregation illness and ageing. Nat. Rev. Mol. Cell Biol. 22, 196–213 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Wippich, F. et al. Twin specificity kinase DYRK3 {couples} stress granule condensation/dissolution to mTORC1 signaling. Cell 152, 791–805 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Berchtold, D., Battich, N. & Pelkmans, L. A systems-level examine reveals regulators of membrane-less organelles in human cells. Mol. Cell 72, 1035–1049 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Shattuck, J. E., Paul, Okay. R., Cascarina, S. M. & Ross, E. D. The prion-like protein kinase Sky1 is required for environment friendly stress granule disassembly. Nat. Commun. 10, 3614 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Walters, R. W., Muhlrad, D., Garcia, J. & Parker, R. Differential results of Ydj1 and Sis1 on Hsp70-mediated clearance of stress granules in Saccharomyces cerevisiae. RNA 21, 1660–1671 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mateju, D. et al. An aberrant part transition of stress granules triggered by misfolded protein and prevented by chaperone operate. EMBO J. 36, 1669–1687 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xie, X. et al. Deubiquitylases USP5 and USP13 are recruited to and regulate heat-induced stress granules via their deubiquitylating actions. J. Cell Sci. 131, jcs210856 (2018).

    PubMed 

    Google Scholar 

  • Buchan, J. R., Kolaitis, R.-M., Taylor, J. P. & Parker, R. Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP operate. Cell 153, 1461–1474 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zaffagnini, G. et al. p62 filaments seize and current ubiquitinated cargos for autophagy. EMBO J. 37, e98308 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, Y. et al. Cytoplasmic DAXX drives SQSTM1/p62 part condensation to activate Nrf2-mediated stress response. Nat. Commun. 10, 3759 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kageyama, S. et al. p62/SQSTM1-droplet serves as a platform for autophagosome formation and anti-oxidative stress response. Nat. Commun. 12, 16 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Peng, S.-z et al. Section separation of Nur77 mediates celastrol-induced mitophagy by selling the liquidity of p62/SQSTM1 condensates. Nat. Commun. 12, 5989 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bennett, C. L. et al. Senataxin mutations elicit motor neuron degeneration phenotypes and yield TDP-43 mislocalization in ALS4 mice and human sufferers. Acta Neuropathol. 136, 425–443 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alberti, S. & Dormann, D. Liquid–liquid part separation in illness. Annu. Rev. Genet. 53, 171–194 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Banani, S. F. et al. Genetic variation related to condensate dysregulation in illness. Dev. Cell 57, 1776–1788 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Mathieu, C., Pappu, R. V. & Taylor, J. P. Past aggregation: pathological part transitions in neurodegenerative illness. Science 370, 56–60 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tsang, B., Pritišanac, I., Scherer, S. W., Moses, A. M. & Forman-Kay, J. D. Section separation as a lacking mechanism for interpretation of illness mutations. Cell 183, 1742–1756 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Chiti, F. & Dobson, C. M. Protein misfolding, amyloid formation, and human illness: a abstract of progress over the past decade. Annu. Rev. Biochem. 86, 27–68 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Li, C. H. et al. MeCP2 hyperlinks heterochromatin condensates and neurodevelopmental illness. Nature 586, 440–444 (2020). This paper demonstrates that mutations of MeCP2 related to the Rett syndrome have an effect on its condensation and heteorchromatin/euchromatin partitioning.

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jiang, Y. et al. Rett syndrome linked to defects in forming the MeCP2/Rbfox/LASR complicated in mouse fashions. Nat. Commun. 12, 5767 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Quiroz, F. G. et al. Liquid-liquid part separation drives pores and skin barrier formation. Science 367, eaax9554 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kanaan, N. M., Hamel, C., Grabinski, T. & Combs, B. Liquid-liquid part separation induces pathogenic tau conformations in vitro. Nat. Commun. 11, 2809 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Heinrich, B. S., Maliga, Z., Stein, D. A., Hyman, A. A. & Whelan, S. P. Section transitions drive the formation of vesicular stomatitis virus replication compartments. mBio 9, e02290–02217 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Risso-Ballester, J. et al. A condensate-hardening drug blocks RSV replication in vivo. Nature 595, 596–599 (2021). This text reveals that small molecule interactions modulate biophysical properties of condensates, and thereby modify their organic exercise, similar to facilitating virus replication.

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Bouchard, J. J. et al. Most cancers mutations of the tumor suppressor SPOP disrupt the formation of energetic, phase-separated compartments. Mol. Cell 72, 19–36 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, Y. et al. TIA1 variant drives myodegeneration in multisystem proteinopathy with SQSTM1 mutations. J. Clin. Investig. 128, 1164–1177 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, W. et al. Biophysical properties of AKAP95 protein condensates regulate splicing and tumorigenesis. Nat. Cell Biol. 22, 960–972 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ramaswami, M., Taylor, J. P. & Parker, R. Altered ribostasis: RNA-protein granules in degenerative issues. Cell 154, 727–736 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Gopal, P. P., Nirschl, J. J., Klinman, E. & Holzbaur, E. L. Amyotrophic lateral sclerosis-linked mutations enhance the viscosity of liquid-like TDP-43 rnp granules in neurons. Proc. Natl Acad. Sci. USA 114, E2466–E2475 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, H. J. et al. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 trigger multisystem proteinopathy and ALS. Nature 495, 467–473 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Murakami, T. et al. ALS/FTD mutation-induced part transition of FUS liquid droplets and reversible hydrogels into irreversible hydrogels impairs rnp granule operate. Neuron 88, 678–690 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mackenzie, I. R. et al. TIA1 mutations in amyotrophic lateral sclerosis and frontotemporal dementia promote part separation and alter stress granule dynamics. Neuron 95, 808–816 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, J. et al. Neurotoxic microglia promote TDP-43 proteinopathy in progranulin deficiency. Nature 588, 459–465 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shen, C. et al. Section separation drives RNA virus-induced activation of the NLRP6 inflammasome. Cell 184, 5759–5774 (2021). This text demonstrates that liquid-liquid part separation facilitates the formation of purposeful amyloids, such because the NLRP6 inflammasome, in a ligand-dependent method.

    CAS 
    PubMed 

    Google Scholar 

  • McDonald, N. A., Fetter, R. D. & Shen, Okay. Meeting of synaptic energetic zones requires part separation of scaffold molecules. Nature 588, 454–458 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, C. & Rabouille, C. Membrane-bound meet membraneless in well being and illness. Cells 8, 1000 (2019).

    CAS 
    PubMed Central 

    Google Scholar 

  • Zhao, Y. G. & Zhang, H. Section separation in membrane biology: The interaction between membrane-bound organelles and membraneless condensates. Dev. Cell 55, 30–44 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Koppers, M., Özkan, N. & Farías, G. G. Complicated interactions between membrane-bound organelles, biomolecular condensates and the cytoskeleton. Entrance. Cell Dev. Biol. 8, 618733 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, J. E., Cathey, P. I., Wu, H., Parker, R. & Voeltz, G. Okay. Endoplasmic reticulum contact websites regulate the dynamics of membraneless organelles. Science 367, eaay7108 (2020). This paper describes the purposeful roles of the interactions of processing our bodies with the ER membrane.

    CAS 
    PubMed 

    Google Scholar 

  • Ma, W. & Mayr, C. A membraneless organelle related to the endoplasmic reticulum allows 3′ UTR-mediated protein-protein interactions. Cell 175, 1492–1506 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Snead, W. T. et al. Membrane surfaces regulate meeting of ribonucleoprotein condensates. Nat. Cell Biol. 24, 461–470 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Yu, X. et al. The STING phase-separator suppresses innate immune signalling. Nat. Cell Biol. 23, 330–340 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Liao, Y.-C. et al. RNA granules hitchhike on lysosomes for long-distance transport, utilizing annexin A11 as a molecular tether. Cell 179, 147–164 (2019). This paper reveals that ALS-associated mutations of ANXA11 impair the tethering RNA granules to lysosomes affecting neuronal RNA transport.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Astro, V., Chiaretti, S., Magistrati, E., Fivaz, M. & De Curtis, I. Liprin-α1, ERC1 and LL5 outline polarized and dynamic buildings which are implicated in cell migration. J. Cell Sci. 127, 3862–3876 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Zeng, M. et al. Section transition in postsynaptic densities underlies formation of synaptic complexes and synaptic plasticity. Cell 166, 1163–1175 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zeng, M. et al. Reconstituted postsynaptic density as a molecular platform for understanding synapse formation and plasticity. Cell 174, 1172–1187 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Milovanovic, D., Wu, Y., Bian, X. & De Camilli, P. A liquid part of synapsin and lipid vesicles. Science 361, 604–607 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Su, X. et al. Section separation of signaling molecules promotes T cell receptor sign transduction. Science 352, 595–599 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stenström, L. et al. Mapping the nucleolar proteome reveals a spatiotemporal group associated to intrinsic protein dysfunction. Mol. Syst. Biol. 16, e9469 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Saitoh, N. et al. Proteomic evaluation of interchromatin granule clusters. Mol. Biol. Cell 15, 3876–3890 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Morelli, F. F. et al. Aberrant compartment formation by HSPB2 mislocalizes lamin A and compromises nuclear integrity and performance. Cell Rep. 20, 2100–2115 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sponga, A. et al. Order from dysfunction within the sarcomere: FATZ types a fuzzy however tight complicated and phase-separated condensates with α-actinin. Sci. Adv. 7, eabg7653 (2021). This paper describes the molecular organisation of the scaffold fashioned by FATZ proteins and supplies molecular insights into the modifications in biophysical properties throughout myofibrillogenesis.

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vu, L. et al. Defining the caprin-1 interactome in unstressed and careworn situations. J. Proteome Res. 20, 3165–3178 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Youn, J.-Y. et al. Properties of stress granule and P-body proteomes. Mol. Cell 76, 286–294 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Jang, S. et al. Glycolytic enzymes localize to synapses below power stress to assist synaptic operate. Neuron 90, 278–291 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shi, B. et al. UTX condensation underlies its tumour-suppressive exercise. Nature 597, 726–731 (2021). This paper reveals the affect of cancer-associated UTX mutations on condensation dynamics and higher-order chromatin interactions.

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Krainer, G. et al. Reentrant liquid condensate part of proteins is stabilized by hydrophobic and non-ionic interactions. Nat. Commun. 12, 1085 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nott, T. J. et al. Section transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol. Cell 57, 936–947 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Murthy, A. C. et al. Molecular interactions underlying liquid-liquid part separation of the FUS low-complexity area. Nat. Struct. Mol. Biol. 26, 637–648 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lin, Y., Protter, D. S., Rosen, M. Okay. & Parker, R. Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. Mol. Cell 60, 208–219 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • King, O. D., Gitler, A. D. & Shorter, J. The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative illness. Mind Res. 1462, 61–80 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bienz, M. Head-to-tail polymerization within the meeting of biomolecular condensates. Cell 182, 799–811 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Rana, U., Brangwynne, C. P. & Panagiotopoulos, A. Z. Section separation vs aggregation conduct for mannequin disordered proteins. J. Chem. Phys. 155, 125101 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wu, H. & Fuxreiter, M. The construction and dynamics of higher-order assemblies: amyloids, signalosomes, and granules. Cell 165, 1055–1066 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Knowles, T. P. et al. Position of intermolecular forces in defining materials properties of protein nanofibrils. Science 318, 1900–1903 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Vernon, R. M. et al. π-π contacts are an ignored protein characteristic related to part separation. eLife 7, e31486 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Schmidt, H. B., Barreau, A. & Rohatgi, R. Section separation-deficient TDP43 stays purposeful in splicing. Nat. Commun. 10, 4890 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Burke, Okay. A., Janke, A. M., Rhine, C. L. & Fawzi, N. L. Residue-by-residue view of in vitro FUS granules that bind the C-terminal area of RNA polymerase ii. Mol. Cell 60, 231–241 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martin, E. W. et al. Valence and patterning of fragrant residues decide the part conduct of prion-like domains. Science 367, 694–699 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tóth-Petróczy, Á. et al. Assessing conservation of disordered areas in proteins. Open Proteom. J. 1, 46–53 (2008).

    Google Scholar 

  • Banjade, S. et al. Conserved interdomain linker promotes part separation of the multivalent adaptor protein nck. Proc. Natl Acad. Sci. USA 112, E6426–E6435 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Riback, J. A. et al. Composition-dependent thermodynamics of intracellular part separation. Nature 581, 209–214 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Franzmann, T. M. et al. Section separation of a yeast prion protein promotes mobile health. Science 359, eaao5654 (2018).

    PubMed 

    Google Scholar 

  • Maharana, S. et al. RNA buffers the part separation conduct of prion-like RNA binding proteins. Science 360, 918–921 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ukmar-Godec, T. et al. Lysine/RNA-interactions drive and regulate biomolecular condensation. Nat. Commun. 10, 2909 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, T. H. et al. Phospho-dependent part separation of FMRP and caprin1 recapitulates regulation of translation and deadenylation. Science 365, 825–829 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Gibson, B. A. et al. Group of chromatin by intrinsic and controlled part separation. Cell 179, 470–484 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vendruscolo, M. & Fuxreiter, M. Sequence determinants of the aggregation of proteins inside condensates generated by liquid-liquid part separation. J. Mol. Biol. 434, 167201 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Solar, Y. et al. The nuclear localization sequence mediates hnRNPA1 amyloid fibril formation revealed by cryoEM construction. Nat. Commun. 11, 6349 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gui, X. et al. Structural foundation for reversible amyloids of hnRNPA1 elucidates their function in stress granule meeting. Nat. Commun. 10, 2006 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Patel, A. et al. A liquid-to-solid part transition of the ALS protein FUS accelerated by illness mutation. Cell 162, 1066–1077 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Gianni, S. et al. Fuzziness and frustration within the power panorama of protein folding, operate, and meeting. Acc. Chem. Res. 54, 1251–1259 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sabari, B. R. et al. Coactivator condensation at super-enhancers hyperlinks part separation and gene management. Science 361, eaar3958 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Klein, I. A. et al. Partitioning of most cancers therapeutics in nuclear condensates. Science 368, 1386–1392 (2020). This paper describes a novel therapeutic technique exploiting condensate partitioning of small molecules.

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dai, B. et al. Myricetin slows liquid–liquid part separation of tau and prompts ATG5-dependent autophagy to suppress tau toxicity. J. Biol. Chem. 297, 101222 (2021).

  • Babinchak, W. M. et al. Small molecules as potent biphasic modulators of protein liquid-liquid part separation. Nat. Commun. 11, 5574 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhu, G. et al. Section separation of disease-associated SHP2 mutants underlies MAPK hyperactivation. Cell 183, 490–502 (2020). This paper describes liquid-liquid part separation because the gain-of-function mechanism of SHP2-associated pathologies and the way allosteric inhibitors modulate condensate formation via a conformational shift.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Habchi, J. et al. Systematic improvement of small molecules to inhibit particular microscopic steps of Aβ42 aggregation in Alzheimer’s illness. Proc. Natl Acad. Sci. USA 114, E200–E208 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Heller, G. T. et al. Small-molecule sequestration of amyloid-β as a drug discovery technique for Alzheimer’s illness. Sci. Adv. 6, eabb5924 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Coelho, T. et al. Tafamidis for transthyretin familial amyloid polyneuropathy: a randomized, managed trial. Neurology 79, 785–792 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Linse, S. et al. Kinetic fingerprints differentiate the mechanisms of motion of anti-Aβ antibodies. Nat. Struct. Mol. Biol. 27, 1125–1133 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Sevigny, J. et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s illness. Nature 537, 50–56 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Dao, T. P. et al. ALS-linked mutations have an effect on UBQLN2 oligomerization and part separation in a position-and amino acid-dependent method. Construction 27, 937–951 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gwon, Y. et al. Ubiquitination of G3BP1 mediates stress granule disassembly in a context-specific method. Science 372, eabf6548 (2021). This paper describes how the mobile context modulates the meeting and disassembly of stress granules via regulating the underlying interplay community.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Boczek, E. E. et al. HspB8 prevents aberrant part transitions of FUS by chaperoning its folded RNA-binding area. eLife 10, e69377 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guo, L. et al. Nuclear-import receptors reverse aberrant part transitions of RNA-binding proteins with prion-like domains. Cell 173, 677–692 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, H. et al. RNA controls polyQ protein part transitions. Mol. Cell 60, 220–230 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Valentin-Vega, Y. A. et al. Most cancers-associated DDX3X mutations drive stress granule meeting and impair world translation. Sci. Rep. 6, 25996 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Makwana, Okay. M., Sarnowski, M. P., Miao, J., Lin, Y.-S. & Del Valle, J. R. N-amination converts amyloidogenic tau peptides into soluble antagonists of mobile seeding. ACS Chem. Neurosci. 12, 3928–3938 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Li, J. et al. The RIP1/RIP3 necrosome types a purposeful amyloid signaling complicated required for programmed necrosis. Cell 150, 339–350 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yamamoto, T. et al. Practical evaluation of the mutational results of human IRAK4 and MyD88 genes. Mol. Immunol. 58, 66–76 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Wang, L. et al. The FAS-FADD loss of life area complicated construction reveals the premise of DISC meeting and illness mutations. Nat. Struct. Mol. Biol. 17, 1324–1329 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rhine, Okay. et al. ALS/FTD-linked mutations in FUS glycine residues trigger accelerated gelation and diminished interactions with wild-type FUS. Mol. Cell 80, 666–681 (2020). This text reveals that ALS-associated FUS mutation induce distinct modifications within the interplay community: glycine mutations compromise nucleation of wild-type FUS, whereas arginine mutations have an effect on droplet topology and RNA interplay dynamics.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Conicella, A. E., Zerze, G. H., Mittal, J. & Fawzi, N. L. ALS mutations disrupt part separation mediated by α-helical construction within the TDP-43 low-complexity C-terminal area. Construction 24, 1537–1549 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • French, R. L. et al. Detection of tar DNA-binding protein 43 (TDP-43) oligomers as preliminary intermediate species throughout mixture formation. J. Biol. Chem. 294, 6696–6709 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Molliex, A. et al. Section separation by low complexity domains promotes stress granule meeting and drives pathological fibrillization. Cell 163, 123–133 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ryan, V. H. et al. Mechanistic view of hnRNPA2 low-complexity area construction, interactions, and part separation altered by mutation and arginine methylation. Mol. Cell 69, 465–479 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Murray, D. T. et al. Structural characterization of the D290V mutation website in hnRNPA2 low-complexity–area polymers. Proc. Natl Acad. Sci. USA 115, E9782–E9791 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lu, J. et al. CryoEM construction of the low-complexity area of hnRNPA2 and its conversion to pathogenic amyloid. Nat. Commun. 11, 4090 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baek, M. et al. TDP-43 and PINK1 mediate CHCHD10S59L mutation–induced defects in drosophila and in vitro. Nat. Commun. 12, 1924 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wegmann, S. et al. Tau protein liquid–liquid part separation can provoke tau aggregation. EMBO J. 37, e98049 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Batlle, C. et al. hnRNPDL part separation is regulated by various splicing and disease-causing mutations speed up its aggregation. Cell Rep. 30, 1117–1128 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Peskett, T. R. et al. A liquid to stable part transition underlying pathological huntingtin exon1 aggregation. Mol. Cell 70, 588–601 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gallego-Iradi, M. et al. N-terminal sequences in matrin 3 mediate part separation into droplet-like buildings that recruit TDP43 variants missing RNA binding parts. Lab. Make investments. 99, 1030–1040 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • He, Y., Li, J. & Zhang, M. Myosin vii, USH1C, and ANKS4B or USH1G collectively type condensed molecular meeting by way of liquid-liquid part separation. Cell Rep. 29, 974–986 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Schneider, J. W. et al. Dysregulated ribonucleoprotein granules promote cardiomyopathy in RBM20 gene-edited pigs. Nat. Med. 26, 1788–1800 (2020). This paper establishes a direct hyperlink between dysregulated RNP granule formation and coronary heart failure.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cloer, E. et al. p62-dependent part separation of patient-derived KEAP1 mutations and NRF2. Mol. Cell. Biol. 38, e00644 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Myeku, N. et al. Tau-driven 26S proteasome impairment and cognitive dysfunction could be prevented early in illness by activating cAMP-PKA signaling. Nat. Med. 22, 46–53 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Boland, B. et al. Selling the clearance of neurotoxic proteins in neurodegenerative issues of ageing. Nat. Rev. Drug Discov. 17, 660–688 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kennedy, M. E. et al. The BACE1 inhibitor verubecestat (MK-8931) reduces CNS β-amyloid in animal fashions and in Alzheimer’s illness sufferers. Sci. Transl. Med. 8, 363ra150 (2016).

    PubMed 

    Google Scholar 

  • Moreno, J. A. et al. Oral therapy concentrating on the unfolded protein response prevents neurodegeneration and scientific illness in prion-infected mice. Sci. Transl. Med. 5, 206ra138 (2013).

    PubMed 

    Google Scholar 

  • Nachman, E. et al. Disassembly of tau fibrils by the human Hsp70 disaggregation equipment generates small seeding-competent species. J. Biol. Chem. 295, 9676–9690 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Qamar, S. et al. FUS part separation is modulated by a molecular chaperone and methylation of arginine cation-π interactions. Cell 173, 720–734 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sawner, A. S. et al. Modulating α-synuclein liquid–liquid part separation. Biochemistry 60, 3676–3696 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Balch, W. E., Morimoto, R. I., Dillin, A. & Kelly, J. W. Adapting proteostasis for illness intervention. Science 319, 916–919 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Hipp, M. S., Kasturi, P. & Hartl, F. U. The proteostasis community and its decline in ageing. Nat. Rev. Mol. Cell Biol. 20, 421–435 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Jiang, L.-L. et al. Two mutations G335D and Q343R throughout the amyloidogenic core area of TDP-43 affect its aggregation and inclusion formation. Sci. Rep. 6, 1–11 (2016).

    Google Scholar 

  • Li, Q., Babinchak, W. M. & Surewicz, W. Okay. Cryo-EM construction of amyloid fibrils fashioned by all the low complexity area of TDP-43. Nat. Commun. 12, 1620 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Facebook
    Twitter
    Pinterest
    WhatsApp
    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments