Monday, September 26, 2022
HomeMicrobiologyPores and skin microbiota evaluation in sufferers with anorexia nervosa and healthy-weight...

Pores and skin microbiota evaluation in sufferers with anorexia nervosa and healthy-weight controls reveals microbial indicators of wholesome weight and associations with the antimicrobial peptide psoriasin

Facebook
Twitter
Pinterest
WhatsApp

  • Campbell, Ok. & Peebles, R. Consuming issues in youngsters and adolescents: State-of-the-art evaluation. Pediatrics 134, 582–592 (2014).

    PubMed 

    Google Scholar 

  • Gibson, D. & Mehler, P. S. Anorexia nervosa and the immune system—A story evaluation. J. Clin. Med. 8, 191 (2019).

    Google Scholar 

  • Westmoreland, P., Krantz, M. J. & Mehler, P. S. Medical issues of anorexia nervosa and bulimia. Am. J. Med. 129, 30–37 (2016).

    PubMed 

    Google Scholar 

  • Bourke, C. D., Berkley, J. A. & Prendergast, A. J. Immune dysfunction as a trigger and consequence of malnutrition. Tendencies Immunol. 37, 386–398 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Calder, P. C. & Jackson, A. A. Undernutrition, an infection and immune perform. Nutr. Res. Rev. 13, 3–29 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Rytter, M. J. H., Kolte, L., Briend, A., Friis, H. & Christensen, V. B. The immune system in youngsters with malnutrition—A scientific evaluation. PLoS ONE 9, e105017 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bowers, T. Ok. & Eckert, E. Leukopenia in anorexia nervosa. Lack of elevated threat of an infection. Arch. Intern. Med. 138, 1520–1523 (1978).

    CAS 
    PubMed 

    Google Scholar 

  • Brown, R. F., Bartrop, R. & Birmingham, C. L. Immunological disturbance and infectious illness in anorexia nervosa: A evaluation. Acta Neuropsychiatr. 20, 117–128 (2008).

    PubMed 

    Google Scholar 

  • Brown, R. F., Bartrop, R., Beumont, P. & Birmingham, C. L. Bacterial infections in anorexia nervosa: Delayed recognition will increase issues. Int. J. Eat Disord. 37, 261–265 (2005).

    PubMed 

    Google Scholar 

  • Nova, E. & Marcos, A. Immunocompetence to evaluate dietary standing in consuming issues. Knowledgeable Rev. Clin. Immunol. 2, 433–444 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Słotwiński, S. M. & Słotwiński, R. Immune issues in anorexia. Cent. Eur. J. Immunol. 42, 294–300 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Strumìa, R., Varotti, E., Manzato, E. & Gualandi, M. Pores and skin indicators in anorexia nervosa. Dermatology 203, 314–317 (2001).

    PubMed 

    Google Scholar 

  • Schaible, U. E. & Kaufmann, S. H. E. Malnutrition and An infection: Complicated Mechanisms and World Impacts. PLoS Med. 4, e115 (2007).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Heilskov, S. et al. Dermatosis in youngsters with oedematous malnutrition (Kwashiorkor): A evaluation of the literature. J. Eur. Acad. Dermatol. Venereol. 28, 995–1001 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Dalton, B. et al. A meta-analysis of cytokine concentrations in consuming issues. J. Psychiatr. Res. 103, 252–264 (2018).

    PubMed 

    Google Scholar 

  • Dalton, B. et al. Inflammatory markers in anorexia nervosa: An exploratory examine. Vitamins 10, 1573 (2018).

    PubMed Central 

    Google Scholar 

  • Pasupuleti, M., Schmidtchen, A. & Malmsten, M. Antimicrobial peptides: Key parts of the innate immune system. Crit. Rev. Biotechnol. 32, 143–171 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Chessa, C. et al. Antiviral and immunomodulatory properties of antimicrobial peptides produced by human keratinocytes. Entrance. Microbiol. 11, 1155 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rademacher, F. et al. The antimicrobial and immunomodulatory perform of RNase 7 in pores and skin. Entrance. Immunol. 10, 2553 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lowes, M. A., Suárez-Fariñas, M. & Krueger, J. G. Immunology of psoriasis. Annu. Rev. Immunol. 32, 227–255 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Watson, P. H., Leygue, E. R. & Murphy, L. C. Psoriasin (S100A7). Int. J. Biochem. Cell Biol. 30, 567–571 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • Rademacher, F., Simanski, M. & Tougher, J. RNase 7 in cutaneous protection. Int. J. Mol. Sci. 17, 560 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Tougher, J. et al. Enhanced expression and secretion of antimicrobial peptides in atopic dermatitis and after superficial pores and skin damage. J. Investig. Dermatol. 130, 1355–1364 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Gambichler, T. et al. Differential mRNA expression of antimicrobial peptides and proteins in atopic dermatitis as in comparison with psoriasis vulgaris and wholesome pores and skin. Int. Arch. Allergy Immunol. 147, 17–24 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Becker, T. et al. FOXO-dependent regulation of innate immune homeostasis. Nature 463, 369–373 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wu, J., Randle, Ok. E. & Wu, L. P. ird1 is a Vps15 homologue essential for antibacterial immune responses in Drosophila. Cell. Microbiol. 9, 1073–1085 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Zinke, I., Schütz, C. S., Katzenberger, J. D., Bauer, M. & Pankratz, M. J. Nutrient management of gene expression in Drosophila: Microarray evaluation of hunger and sugar-dependent response. EMBO J. 21, 6162–6173 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bendix, M.-C. et al. Antimicrobial peptides in sufferers with anorexia nervosa: Comparability with wholesome controls and the impression of weight achieve. Sci. Rep. 10, 1–8 (2020).

    Google Scholar 

  • Eisenhofer, R. et al. Contamination in low microbial biomass microbiome research: Points and proposals. Tendencies Microbiol. 27, 105–117 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Sze, M. A., Abbasi, M., Hogg, J. C. & Sin, D. D. A comparability between droplet digital and quantitative PCR within the evaluation of bacterial 16s load in lung tissue samples from management and COPD GOLD 2. PLoS ONE 9, e110351 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abellan-Schneyder, I., Schusser, A. J. & Neuhaus, Ok. ddPCR permits 16S rRNA gene amplicon sequencing of very small DNA quantities from low-biomass samples. BMC Microbiol. 21, 349 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Quan, P.-L., Sauzade, M. & Brouzes, E. dPCR: A know-how evaluation. Sensors (Basel) 18, 1271 (2018).

    ADS 

    Google Scholar 

  • Vogelstein, B. & Kinzler, Ok. W. Digital PCR. Proc. Natl. Acad. Sci. U.S.A. 96, 9236–9241 (1999).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gobert, G. et al. Droplet digital PCR improves absolute quantification of viable lactic acid micro organism in faecal samples. J. Microbiol. Strategies 148, 64–73 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Maheshwari, Y., Selvaraj, V., Hajeri, S. & Yokomi, R. Software of droplet digital PCR for quantitative detection of Spiroplasma citri compared with actual time PCR. PLoS ONE 12, e0184751 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Karstens, L. et al. Controlling for contaminants in low-biomass 16S rRNA gene sequencing experiments. mSystems 4, e00290-19 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Easy statistical identification and removing of contaminant sequences in marker-gene and metagenomics information. Microbiome 6, 226 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Weyrich, L. S. et al. Laboratory contamination over time throughout low-biomass pattern evaluation. Mol. Ecol. Resour. 19, 982–996 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Anderson, M. J. & Willis, T. J. Canonical evaluation of principal coordinates: A helpful methodology of constrained ordination for ecology. Ecology 84, 511–525 (2003).

    Google Scholar 

  • De Caceres, M. & Legendre, P. Associations between species and teams of websites: Indices and statistical inference. Ecology 90, 3566–3574 (2009).

    PubMed 

    Google Scholar 

  • Mu, Q., Tavella, V. J. & Luo, X. M. Position of Lactobacillus reuteri in human well being and ailments. Entrance. Microbiol. 9, 757 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Delanghe, L. et al. The function of lactobacilli in inhibiting pores and skin pathogens. Biochem. Soc. Trans. 49, 617–627 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Kim, J.-H. et al. Taxonomic profiling of pores and skin microbiome and correlation with medical pores and skin parameters in wholesome Koreans. Sci. Rep. 11, 16269 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kanamoto, T., Terakubo, S. & Nakashima, H. Antimicrobial susceptibilities of oral isolates of Abiotrophia and Granulicatella based on the consensus tips for fastidious micro organism. Medicines (Basel) 5, 129 (2018).

    CAS 

    Google Scholar 

  • Si, J. et al. Intestine microbiome signatures distinguish kind 2 diabetes mellitus from non-alcoholic fatty liver illness. Comput. Struct. Biotechnol. J. 19, 5920–5930 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rath, S., Rud, T., Karch, A., Pieper, D. H. & Important, M. Pathogenic capabilities of host microbiota. Microbiome 6, 174 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Assarsson, M., Söderman, J., Dienus, O. & Seifert, O. Vital variations within the bacterial microbiome of the pharynx and pores and skin in sufferers with psoriasis in contrast with wholesome controls. Acta Derm Venereol. 100, adv00273 (2020).

    PubMed 

    Google Scholar 

  • Omodei, D. et al. Immune-metabolic profiling of anorexic sufferers reveals an anti-oxidant and anti inflammatory phenotype. Metabolism 64, 396–405 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Chang, H.-W. et al. Alteration of the cutaneous microbiome in psoriasis and potential function in Th17 polarization. Microbiome 6, 154 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Alekseyenko, A. V. et al. Neighborhood differentiation of the cutaneous microbiota in psoriasis. Microbiome 1, 31 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gläser, R., Köten, B., Wittersheim, M. & Tougher, J. Psoriasin: Key molecule of the cutaneous barrier?. JDDG J. Deutsch. Dermatol. Ges. 9, 897–902 (2011).

    Google Scholar 

  • Gläser, R. et al. The antimicrobial protein psoriasin (S100A7) Is upregulated in atopic dermatitis and after experimental pores and skin barrier disruption. J. Investig. Dermatol. 129, 641–649 (2009).

    PubMed 

    Google Scholar 

  • Nam, B. et al. Regulatory results of Lactobacillus plantarum HY7714 on pores and skin well being by bettering intestinal situation. PLoS ONE 15, e0231268 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jung, Y.-O. et al. Lysates of a probiotic, Lactobacillus rhamnosus, can enhance pores and skin barrier perform in a reconstructed human dermis mannequin. Int J Mol Sci 20, 428 (2019).

    Google Scholar 

  • Lee, D. E. et al. Scientific proof of results of lactobacillus plantarum HY7714 on pores and skin getting older: A randomized, double blind, placebo-controlled examine. J. Microbiol. Biotechnol. 25, 2160–2168 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Markowiak-Kopeć, P. & Śliżewska, Ok. The impact of probiotics on the manufacturing of short-chain fatty acids by human intestinal microbiome. Vitamins 12, E1107 (2020).

    PubMed 

    Google Scholar 

  • Morvan, P.-Y., Vallee, R. & Py, M. Analysis of the consequences of hectic life on human pores and skin microbiota. Appl. Microbiol. Open Entry 4, 8 (2018).

    Google Scholar 

  • Byeon, J. et al. Insights into the pores and skin microbiome of sickle cell illness leg ulcers. Wound Restore. Regen. 29, 801–809 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mukherjee, S. et al. Sebum and hydration ranges in particular areas of human face considerably predict the character and variety of facial pores and skin microbiome. Sci. Rep. 6, 36062 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Łoś-Rycharska, E. et al. A mixed evaluation of intestine and pores and skin microbiota in infants with meals allergy and atopic dermatitis: A pilot examine. Vitamins 13, 1682 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, Z. et al. New insights into the pores and skin microbial communities and pores and skin getting older. Entrance. Microbiol. 11, 565549 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kates, A. E., Zimbric, M. L., Mitchell, Ok., Skarlupka, J. & Safdar, N. The impression of chlorhexidine gluconate on the pores and skin microbiota of kids and adults: A pilot examine. Am. J. Infect. Management 47, 1014–1016 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Park, H. et al. Pilot examine on the brow pores and skin microbiome and quick chain fatty acids relying on the SC purposeful index in Korean cohorts. Microorganisms 9, 2216 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, L. et al. Amplicon-based sequencing and co-occurence community evaluation reveals notable variations of microbial neighborhood construction in wholesome and dandruff scalps. BMC Genom. 23, 312 (2022).

    CAS 

    Google Scholar 

  • Kim, H.-J. et al. Segregation of age-related pores and skin microbiome traits by performance. Sci. Rep. 9, 16748 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brandwein, M., Katz, I., Katz, A. & Kohen, R. Past the intestine: Pores and skin microbiome compositional adjustments are related to BMI. Hum. Microbiome J. 13, 100063 (2019).

    Google Scholar 

  • Grice, E. A. et al. A range profile of the human pores and skin microbiota. Genome Res. 18, 1043–1050 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, D. Optimizing strategies and dodging pitfalls in microbiome analysis. Microbiome 5, 14 (2017).

    Google Scholar 

  • Kong, H. H. Particulars matter: Designing pores and skin microbiome research. J. Investig. Dermatol. 136, 900–902 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Kong, H. H. et al. Performing pores and skin microbiome analysis: A way to the insanity. J. Investig. Dermatol. 137, 561–568 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Meisel, J. S. et al. Pores and skin microbiome surveys are strongly influenced by experimental design. J. Investig. Dermatol. 136, 947–956 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Nakatsuji, T. et al. The microbiome extends to subepidermal compartments of regular pores and skin. Nat. Commun. 4, 1431 (2013).

    ADS 
    PubMed 

    Google Scholar 

  • Grice, E. A. & Segre, J. A. The pores and skin microbiome. Nat. Rev. Microbiol. 9, 244–253 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mourelatos, Ok., Eady, E. A., Cunliffe, W. J., Clark, S. M. & Cove, J. H. Temporal adjustments in sebum excretion and propionibacterial colonization in preadolescent youngsters with and with out pimples. Br. J. Dermatol. 156, 22–31 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Leyden, J. J., McGinley, Ok. J., Mills, O. H. & Kligman, A. M. Propionibacterium ranges in sufferers with and with out pimples vulgaris. J. Investig. Dermatol. 65, 382–384 (1975).

    CAS 
    PubMed 

    Google Scholar 

  • Neale, J., Pais, S. M. A., Nicholls, D., Chapman, S. & Hudson, L. D. What are the consequences of restrictive consuming issues on development and puberty and are results everlasting? A scientific evaluation and meta-analysis. J. Adolesc. Well being 66, 144–156 (2020).

    PubMed 

    Google Scholar 

  • Fierer, N., Hamady, M., Lauber, C. L. & Knight, R. The affect of intercourse, handedness, and washing on the variety of hand floor micro organism. Proc. Natl. Acad. Sci. 105, 17994–17999 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Oh, J., Byrd, A. L., Park, M., Kong, H. H. & Segre, J. A. Temporal stability of the human pores and skin microbiome. Cell 165, 854–866 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cao, C., Xiao, Z., Wu, Y. & Ge, C. Weight-reduction plan and pores and skin aging-from the angle of meals vitamin. Vitamins 12, E870 (2020).

    PubMed 

    Google Scholar 

  • Liakou, A. I., Theodorakis, M. J., Melnik, B. C., Pappas, A. & Zouboulis, C. C. Dietary medical research in dermatology. J. Medication Dermatol. 12, 1104–1109 (2013).

    PubMed 

    Google Scholar 

  • Attia, E. et al. Feeding and consuming issues in DSM-5. AJP 170, 1237–1239 (2013).

    Google Scholar 

  • Bilska, B. et al. Expression of antimicrobial peptide genes oscillates alongside day/night time rhythm defending mice pores and skin from micro organism. Exp. Dermatol. 30, 1418–1427 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Eda, N., Shimizu, Ok., Suzuki, S., Lee, E. & Akama, T. Results of high-intensity endurance train on epidermal obstacles towards microbial invasion. J. Sports activities Sci. Med. 12, 44–51 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Köten, B. et al. RNase 7 contributes to the cutaneous protection towards Enterococcus faecium. PLoS ONE 4, e6424 (2009).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gläser, R. et al. Antimicrobial psoriasin (S100A7) protects human pores and skin from Escherichia coli an infection. Nat. Immunol. 6, 57–64 (2005).

    PubMed 

    Google Scholar 

  • Wittersheim, M. et al. Differential expression and in vivo secretion of the antimicrobial peptides psoriasin (S100A7), RNase 7, human beta-defensin-2 and -3 in wholesome human pores and skin. Exp. Dermatol. 22, 364–366 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Gläser, R. et al. UV-B radiation induces the expression of antimicrobial peptides in human keratinocytes in vitro and in vivo. J. Allergy Clin. Immunol. 123, 1117–1123 (2009).

    PubMed 

    Google Scholar 

  • Belheouane, M. et al. Assessing similarities and disparities within the pores and skin microbiota between wild and laboratory populations of home mice. ISME J. https://doi.org/10.1038/s41396-020-0690-7 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. Ok. & Schloss, P. D. Improvement of a dual-index sequencing technique and curation pipeline for analyzing amplicon sequence information on the MiSeq illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112–5120 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Callahan, B. J. et al. DADA2: Excessive-resolution pattern inference from Illumina amplicon information. Nat. Strategies 13, 581–583 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Quast, C. et al. The SILVA ribosomal RNA gene database challenge: Improved information processing and web-based instruments. Nucleic Acids Res. 41, D590-596 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Salter, S. J. et al. Reagent and laboratory contamination can critically impression sequence-based microbiome analyses. BMC Biol. 12, 87 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • McMurdie, P. J. & Holmes, S. phyloseq: An R package deal for reproducible interactive evaluation and graphics of microbiome census information. PLoS ONE https://doi.org/10.1371/journal.pone.0061217 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Benjamini, Y. & Hochberg, Y. Controlling the false discovery fee: A sensible and highly effective strategy to a number of testing. J. R. Stat. Soc. Ser. B Methodol. 57, 289–300 (1995).

    MathSciNet 
    MATH 

    Google Scholar 

  • Cáceres, M. D. & Legendre, P. Associations between species and teams of websites: Indices and statistical inference. Ecology 90, 3566–3574 (2009).

    PubMed 

    Google Scholar 

  • Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for fast project of rRNA sequences into the brand new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cole, J. R. et al. The ribosomal database challenge (RDP-II): Sequences and instruments for high-throughput rRNA evaluation. Nucleic Acids Res. 33, D294-296 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Facebook
    Twitter
    Pinterest
    WhatsApp
    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments