Friday, September 30, 2022
HomeMicrobiologyPoor physique situation is related to decrease hippocampal plasticity and better intestine...

Poor physique situation is related to decrease hippocampal plasticity and better intestine methanogen abundance in grownup laying hens from two housing programs

Facebook
Twitter
Pinterest
WhatsApp

  • Rodenburg, T. B. et al. Welfare evaluation of laying hens in furnished cages and non-cage programs: An on-farm comparability. Anim. Welf. 17, 363–373 (2008).

    CAS 

    Google Scholar 

  • Lay, D. C. Jr. et al. Hen welfare in numerous housing programs. Poult. Sci. 90, 278–294 (2011).

    PubMed 

    Google Scholar 

  • Weeks, C. A., Brown, S. N., Richards, G. J., Wilkins, L. J. & Knowles, T. G. Ranges of mortality in hens by finish of lay on farm and in transit to slaughter in Nice Britain. Vet. Rec. 170, 647 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Fossum, O., Jansson, D. S., Etterlin, P. E. & Vågsholm, I. Causes of mortality in laying hens in numerous housing programs in 2001 to 2004. Acta Vet. Scand. 51, 3 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Graml, C., Niebuhr, Ok. & Waiblinger, S. Response of laying hens to people within the residence or a novel setting. Appl. Anim. Behav. Sci. 113, 98–109 (2008).

    Google Scholar 

  • Kujiyat, S. Ok., Craig, J. V. & Dayton, A. D. Length of tonic immobility affected by housing setting in white leghorn hens. Poult. Sci. 62, 2280–2282 (1983).

    CAS 
    PubMed 

    Google Scholar 

  • Colson, S., Arnould, C., Guémené, D. & Michel, V. in 6èmes Journées de la Recherche Avicole,. (ITAVI).

  • Koelkebeck, Ok. W., Amoss, M. S. J. & Cain, J. R. Manufacturing, physiological, and behavioral responses of laying hens in numerous administration environments. Poult. Sci. 66, 397–407 (1987).

    CAS 
    PubMed 

    Google Scholar 

  • Koelkebeck, Ok. W. & Cain, J. R. Efficiency, habits, plasma corticosterone, and financial returns of laying hens in a number of administration alternate options. Poult. Sci. 63, 2123–2131 (1984).

    CAS 
    PubMed 

    Google Scholar 

  • Koelkebeck, Ok. W., Cain, J. R. & Amoss, M. S. J. Corticosterone sampling of laying hens in numerous administration programs. Poult. Sci. 65, 183–185 (1986).

    CAS 
    PubMed 

    Google Scholar 

  • Craig, J. V., Craig, J. A. & Vargas, J. V. Corticosteroids and different indicators of hens’ well-being in 4 laying-house environments. Poul. Sci. 65, 856–863 (1986).

    CAS 

    Google Scholar 

  • Mench, J. A. Results of cage and ground pen administration on habits, manufacturing, and physiological stress responses of laying hens. Poult. Sci. 65, 1058–1069 (1986).

    CAS 
    PubMed 

    Google Scholar 

  • Campo, J. L., Prieto, M. T. & Dávila, S. G. Results of housing system and chilly stress on heterophil-to-lymphocyte ratio, fluctuating asymmetry, and tonic immobility period of chickens. Poult. Sci. 87, 621–626 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Shini, S. Physiological responses of laying hens to the choice housing programs. Int. J. Poult. Sci. 2, 357–360 (2003).

    Google Scholar 

  • Salamano, G. et al. Acute part proteins and heterophil: Lymphocyte ratio in laying hens in numerous housing programs. Vet. Rec. 167, 749–751 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Norwood, F. B. & Lusk, J. L. A calibrated auction-conjoint valuation technique: Valuing pork and eggs produced below differing animal welfare situations. J. Environ. Econ. Manag. 62, 80–94 (2011).

    Google Scholar 

  • Wigley, P., Hulme, S. D., Bumstead, N. & Barrow, P. A. In vivo and in vitro research of genetic resistance to systemic salmonellosis within the rooster encoded by the SAL1 locus. Microbes Infect. 4, 1111–1120 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Humphrey, T. Are comfortable chickens safer chickens? Poultry welfare and illness susceptibility. Br. Poult. Sci. 47, 379–391 (2006).

    PubMed 

    Google Scholar 

  • Littin, Ok. E. & Cockrem, J. F. Particular person variation in corticosterone secretion in laying hens. Br. Poult. Sci. 42, 536–546 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Nicol, C. J., Caplen, G., Edgar, J. & Browne, W. J. Associations between welfare indicators and environmental alternative in laying hens. Anim. Behav. 78, 413–424 (2009).

    Google Scholar 

  • de Haas, E. N., Lee, C., Hernandez, C. E., Naguib, M. & Rodenburg, T. B. Particular person variations in character in laying hens are associated to studying a color cue affiliation. Behav. Proc. 134, 37–42 (2017).

    Google Scholar 

  • Rufener, C. et al. Keel bone fractures are related to particular person mobility of laying hens in an aviary system. Appl. Anim. Behav. Sci. 217, 48–56 (2019).

    Google Scholar 

  • Rufener, C., Baur, S., Stratmann, A. & Toscano, M. J. Keel bone fractures have an effect on egg laying efficiency however not egg high quality in laying hens housed in a business aviary system. Poult. Sci. 98, 1589–1600 (2018).

    Google Scholar 

  • Rushen, J. The peck orders of home chickens: How do they develop and why are they linear?. Anim. Behav. 30, 1129–1137 (1982).

    Google Scholar 

  • Jackson, M. E. & Waldroup, P. W. Analysis notice: Impact of cage stage (tier) on the efficiency of white leghorn chickens. Poult. Sci. 66, 907–999 (1987).

    CAS 
    PubMed 

    Google Scholar 

  • El-lethey, H., Jungi, T. W. & Huber-Eicher, B. Results of feeding corticosterone and housing situations on feather pecking in laying hens (Gallus gallus domesticus). Physiol. Behav. 73, 243–251 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Eid, Y. Z., Ohtsuka, A. & Hayashi, Ok. Tea polyphenols cut back glucocorticoid-induced development inhibition and oxidative stress in broiler chickens. Br. Poult. Sci. 44, 127–132 (2010).

    Google Scholar 

  • Thaxton, J. P. & Puvadolpirod, S. Mannequin of physiological stress in chickens 5. Quantitative analysis. Poult. Sci. 79, 391–395. https://doi.org/10.1093/ps/79.3.391 (2000).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Yang, X. J., Li, W. L., Feng, Y. & Yao, J. H. Results of immune stress on development efficiency, immunity, and cecal microflora in chickens. Poult. Sci. 90, 2740–2746 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Karaman, M. Impact of transport time on physique efficiency of broilers throughout transit to slaughter home. J. Anim. Vet. Adv. 8, 1555–1557 (2009).

    Google Scholar 

  • Mindus, C. et al. in Poultry Science Affiliation (PSA) 107th Annual Assembly Vol. Poultry Science 97 43–44 (San Antonio, Texas, US, 2018).

  • Campo, J. L., Gil, M. G., Torres, O. & Davila, S. G. Affiliation between plumage situation and worry and stress ranges in 5 breeds of chickens. Poult. Sci. 80, 549–552 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Campo, J. L. & Prieto, M. J. Affiliation between plumage situation and fluctuating asymmetry and between feathers elimination, heterophil-to-lymphocyte ratio and tonic immobility period in chickens. Eur. Poult. Sci. 73, 250–256 (2009).

    Google Scholar 

  • Na-Lampang, P. & Craig, J. V. Cage- and floor-rearing results on productiveness, nervousness, feather situation, and livability of white leghorn layers. Poult. Sci. 69, 902–909 (1990).

    Google Scholar 

  • Ouart, M. D. & Adams, A. W. Results of cage design and fowl density on layers: 1. Productiveness, feathering, and nervousness. Poult. Sci. 61, 1606–1613 (1982).

    Google Scholar 

  • Hansen, I., Braastad, B. O., Storbråten, J. & Tofastrud, M. Variations in fearfulness indicated by tonic immobility between laying hens in aviaries and in cages. Anim. Welf. 2, 105–112 (1993).

    Google Scholar 

  • Bilcik, B. & Keeling, L. J. Modifications in feather situation in relation to feather pecking and aggressive behaviour in laying hens. Br. Poult. Sci. 40, 444–451 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • Bestman, M. & Wagenaar, J. Well being and welfare in Dutch natural laying hens. Animals (Basel) 4, 374–390 (2014).

    Google Scholar 

  • Bradshaw, R. H. Particular person attributes as predictors of social standing in small teams of laying hens. Appl. Anim. Behav. Sci. 34, 359–363 (1992).

    Google Scholar 

  • Cloutier, S., Beaugrand, J. P. & Laguë, P. C. The position of particular person variations and patterns of decision within the formation of dominance orders in home hen triads. Behav. Proc. 38, 227–239 (1996).

    CAS 

    Google Scholar 

  • Fabel, Ok. et al. Additive results of bodily train and environmental enrichment on grownup hippocampal neurogenesis in mice. Entrance. Neurosci. 3, 50 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zheng, J. et al. Grownup hippocampal neurogenesis alongside the dorsoventral axis contributes differentially to environmental enrichment mixed with voluntary train in assuaging power inflammatory ache in mice. Neurobiol. Dis. 37, 4145–4157 (2017).

    CAS 

    Google Scholar 

  • Nakajima, S., Ohsawa, I., Ohta, S., Ohno, M. & Mikamic, T. Common voluntary train cures stress-induced impairment of cognitive perform and cell proliferation accompanied by will increase in cerebral IGF-1 and GST exercise in mice. Behav. Mind Res. 211, 178–184 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Kiuchi, T., Lee, H. & Mikamia, T. Common train cures depression-like habits through VEGF-Flk-1 signaling in chronically burdened mice. Neuroscience 207, 208–217 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Kim, J. et al. Sexual exercise counteracts the suppressive results of power stress on grownup hippocampal neurogenesis and recognition reminiscence. Mind Res. 1538, 26–40 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Veena, J. et al. Enriched setting restores hippocampal cell proliferation and ameliorates cognitive deficits in chronically burdened rats. J. Neurosci. Res. 87, 831–843 (2008).

    Google Scholar 

  • Veena, J., Srikumar, B. N., Raju, T. R. & Shankaranarayana Rao, B. S. Publicity to enriched setting restores the survival and differentiation of latest born cells within the hippocampus and ameliorates depressive signs in chronically burdened rats. Neurosci. Lett. 455, 178–182 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Romero-Grimaldi, C. et al. Stress will increase the unfavourable results of power ache on hippocampal neurogenesis. Anesth. Analg. 121, 1078–1088 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Rao, M. S. & Shetty, A. Ok. Efficacy of doublecortin as a marker to analyse absolutely the quantity and dendritic development of newly generated neurons within the grownup dentate gyrus. Eur. J. Neurosci. 19, 234–246 (2004).

    PubMed 

    Google Scholar 

  • Couillard-Despres, S. et al. Doublecortin expression ranges in grownup mind replicate neurogenesis. Eur. J. Neurosci. 21, 1–14 (2005).

    PubMed 

    Google Scholar 

  • Alvarez-Buylla, A., Theelen, M. & Nottebohm, F. Proliferation, “scorching spots” in grownup avian ventricular zone reveal radial cell division. Neuron 5, 101–109 (1990).

    CAS 
    PubMed 

    Google Scholar 

  • Balthazart, J., Boseret, G., Konkle, A. T., Hurley, L. L. & Ball, G. F. Doublecortin as a marker of grownup neuroplasticity within the canary music management nucleus HVC. Eur. J. Neurosci. 24, 801–817 (2008).

    Google Scholar 

  • Vellema, M., Hertel, M., Urbanus, S. L., Van der Linden, A. & Gahr, M. Evaluating the predictive worth of doublecortin as a marker for grownup neurogenesis in canaries (Serinus canaria). J. Comput. Neurol. 522, 1299–1315 (2014).

    CAS 

    Google Scholar 

  • Balthazart, J. & Ball, G. F. Doublecortin is a extremely helpful endogenous marker of grownup neurogenesis in canaries. Mind Behav. Evolut. 84, 1–4 (2014).

    Google Scholar 

  • Balthazart, J. & Ball, G. F. Endogenous versus exogenous markers of grownup neurogenesis in canaries and different birds: Benefits and drawbacks. J. Comput. Neurol. 522, 4100–4120 (2014).

    CAS 

    Google Scholar 

  • Gualtieri, F. et al. Unpredictable power gentle stress suppresses the incorporation of latest neurons on the caudal pole of the rooster hippocampal formation. Sci. Rep. 9, 7129 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Armstrong, E. A. et al. Keel bone fractures induce a depressive-like state in laying hens. Sci. Rep. 10, 3007 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Robertson, B. et al. Meals restriction reduces neurogenesis within the avian hippocampal formation. PLoS ONE 12, e0189158 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Weber, M. D., Godbout, J. P. & Sheridan, J. F. Repeated social defeat, neuroinflammation, and habits: Monocytes carry the sign. Neuropsychopharmacology 42, 46–61 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wigley, P. et al. Macrophages remoted from chickens genetically resistant or vulnerable to systemic salmonellosis present magnitudinal and temporal differential expression of cytokines and chemokines following salmonella enterica problem. Infect. Immun. 74, 1425–1430 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shini, S., Huff, G. R., Shini, A. & Kaiser, P. Understanding stress-induced immunosuppression: Exploration of cytokine and chemokine gene profiles in rooster peripheral leukocytes. Poult. Sci. 89, 841–851 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Madison, A. & Kiecolt-Glaser, J. Ok. Stress, melancholy, eating regimen, and the intestine microbiota: Human–micro organism interactions on the core of psychoneuroimmunology and diet. Curr. Opin. Behav. Sci. 28, 105–110 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Maltz, R. M. et al. Extended restraint stressor publicity in outbred CD-1 mice impacts microbiota, colonic irritation, and quick chain fatty acids. PLoS ONE 13, e0196961 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wigley, P. Blurred traces: Pathogens, commensals, and the wholesome intestine. Entrance. Vet. Sci. 2, 40 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Awad, W. A., Hess, C. & Hess, M. Re-thinking the chicken-campylobacter jejuni interplay: A assessment. Avian Pathol. 47, 352–363 (2018).

    PubMed 

    Google Scholar 

  • Dennis, R. L. Adrenergic and noradrenergic regulation of poultry habits and manufacturing. Domest. Anim. Endocrinol. 56(Suppl), S94-100 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Birkl, P. et al. Variations in cecal microbiome of chosen excessive and low feather-pecking laying hens. Poult. Sci. 97, 3009–3014 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • van der Eijk, J. A. J. et al. Variations in intestine microbiota composition of laying hen traces divergently chosen on feather pecking. Poult. Sci. 98, 7009–7021 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Shi, S. et al. Evaluation of high-throughput sequencing for cecal microbiota range and performance in hens below completely different rearing programs. 3 Biotech 9, 438 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Casey-Trott, T. et al. Strategies for evaluation of keel bone harm in poultry. Poult. Sci. 94, 2339–2350 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • RSPCA. RSPCA welfare requirements for Pullets (laying hens), https://science.rspca.org.uk/sciencegroup/farmanimals/requirements/pullets (2018).

  • Puelles, L. The Chick Mind in Stereotaxic Coordinates: An Atlas That includes Neuromeric Subdivisions and Mammalian Homologies (Educational Press, 2007).

    Google Scholar 

  • Boseret, G., Ball, G. F. & Balthazart, J. The microtubule-associated protein doublecortin is broadly expressed within the telencephalon of grownup canaries. J. Chem. Neuroanat. 33, 140–154 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Armstrong, E. A. et al. Cell proliferation within the grownup rooster hippocampus correlates with particular person variations in time spent in out of doors areas and tonic immobility. Entrance. Vet. Sci. 7, 587 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Caporaso, J. G. et al. World patterns of 16S rRNA range at a depth of tens of millions of sequences per pattern. Proc. Natl. Acad. Sci. 108, 4516–4522 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • D’Amore, R. et al. A complete benchmarking research of protocols and sequencing platforms for 16S rRNA neighborhood profiling. BMC Genom. 17, 1–20 (2016).

    Google Scholar 

  • Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome knowledge science utilizing QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Precise sequence variants ought to substitute operational taxonomic models in marker-gene knowledge evaluation. ISME J. 11, 2639–2643 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mcdonald, D. et al. The organic remark matrix (BIOM) format or: How I discovered to cease worrying and love the ome. GigaScience 1, 7 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yilmaz, P. et al. The SILVA and “all-species dwelling tree challenge (LTP)” taxonomic frameworks. Nucleic Acids Res. 42, 643–648 (2014).

    Google Scholar 

  • Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 1–17 (2018).

    Google Scholar 

  • Katoh, Ok. & Standley, D. M. MAFFT a number of sequence alignment software program model 7: Enhancements in efficiency and value article quick observe. Mol. Biol. Evol. 30, 772–780 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Value, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—Roughly maximum-likelihood bushes for giant alignments. PLoS ONE 5, e9490 (2010).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Religion, D. P. Conservation analysis and phylogenetic range. Biol. Cons. 61, 1–10 (1992).

    Google Scholar 

  • Martino, C. et al. A novel sparse compositional method reveals microbial perturbations. MSystems 4, e00016-19 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Morton, J. T. et al. Establishing microbial composition measurement requirements with reference frames. Nat. Commun. 10, 1–11 (2019).

    CAS 

    Google Scholar 

  • Fedarko, M. W. et al. Visualizing ’omic function rankings and log-ratios utilizing Qurro. NAR Genom. Bioinform. 2, lqaa023 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Worldwide, H.-L. Hy-Line Brown Administration Information, http://www.hy-line.co.uk/uploadedfiles/1518531754-brown_com_guide_eng.pdf (2016).

  • Worldwide, H. N. Nick Chick New Administration Information, https://hn-int.com/wp-content/uploads/2020/10/nick-chick.pdf (2020).

  • Rychlik, I. Composition and performance of rooster intestine microbiota. Animals 10, 103 (2020).

    PubMed Central 

    Google Scholar 

  • Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Human intestine microbes related to weight problems. Nature 444, 1022–1023 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Dinan, T. G. & Cryan, J. F. Regulation of the stress response by the intestine microbiota: Implications for psychoneuroendocrinology. Psychoneuroendocrinology 37, 1369–1378 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Soni, J. L., Adaval, S. C. & Kolte, G. N. Preliminary observations on anaemia, splenomegaly and chilly agglutinin manufacturing throughout acute avian spirochaetosis. Indian J. Anim. Sci. 50, 1110–1113 (1980).

    Google Scholar 

  • Smyth, J. A. & McNamee, P. T. in Poultry Ailments (eds F. Jordan, M. Pattison, D. Alexander, & T. Faragher) 191–199 (Elsevier, 2001).

  • Zimomra, Z. R., Porterfield, V. M., Camp, R. M. & Johnson, J. D. Time-dependent mediators of HPA axis activation following dwell Escherichia coli. Regul. Integr. Comp. Physiol. 301, R1648-1657 (2011).

    CAS 

    Google Scholar 

  • Ramirez, Ok., Niraula, A. & Sheridan, J. F. GABAergic modulation with classical benzodiazepines forestall stress-induced neuro-immune dysregulation and behavioral alterations. Mind Behav. Immun. 51, 154–168 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Emami, N. Ok., Greene, E. S., Kogut, M. H. & Dridi, S. Warmth stress and feed restriction distinctly have an effect on efficiency, carcass and meat yield, intestinal integrity, and inflammatory (chemo)cytokines in broiler chickens. Entrance. Physiol. 12, 1148 (2021).

    Google Scholar 

  • Hangalapura, B. N., Kaiser, M. G., van der Poel, J. J., Parmentier, H. Ok. & Lamont, S. J. Chilly stress equally enhances in vivo pro-inflammatory cytokine gene expression in rooster traces divergently chosen for antibody responses. Dev. Comp. Immunol. 30, 503–511 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Asif, M. et al. Interleukin-6 expression after infectious bronchitis virus an infection in chickens. Viral Immunol. 20, 479–486 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Petra, A. et al. Intestine-microbiota-brain axis and its impact on neuropsychiatric problems with suspected immune dysregulation. Clin. Ther. 37, 984–995 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bailey, M. T., Dowd, S. E. & Galley, J. D. Publicity to a social stressor alters the construction of the intestinal microbiota: Implications for stressor-induced immunomodulation. Mind Behav. Immun. 25, 397–407 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Lyte, M., Li, W., Opitz, N., Gaykema, R. P. A. & Goehlerd, L. E. Induction of anxiety-like habits in mice through the preliminary phases of an infection with the agent of murine colonic hyperplasia Citrobacter rodentium. Physiol. Behav. 89, 350–357 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Heijtz, R. D. et al. Regular intestine microbiota modulates mind improvement and habits. Proc. Natl. Acad. Sci. U.S.A. 108, 3047–3052 (2011).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar 

  • Sudo, N. et al. Postnatal microbial colonization packages the hypothalamic–pituitary–adrenal system for stress response in mice. J. Physiol. 558, 263–275 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Johnson, Ok. A. & Johnson, D. E. Methane emissions from cattle. J. Anim. Sci. 73, 2483–2492 (1995).

    CAS 
    PubMed 

    Google Scholar 

  • Mappley, L. J., La Ragione, R. M. & Woodward, M. J. Brachyspira and its position in avian intestinal spirochaetosis. Vet. Microbiol. 31, 245–260 (2014).

    Google Scholar 

  • Dawkins, M. S. Elusive idea of most popular group dimension in home hens. Appl. Anim. Ethol. 8, 365–375 (1982).

    Google Scholar 

  • Weeks, C. A. & Nicol, C. J. Behavioural wants, priorities and preferences of laying hens. Worlds Poult. Sci. J. 62, 296–307 (2006).

    Google Scholar 

  • Brilliant, A. & Johnson, E. A. Smothering in business free-range laying hens: A preliminary investigation. Vet. Rec. 168, 512 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Michel, V. & Huonnic, D. A comparability of welfare, well being and manufacturing efficiency of laying hens reared in cages or in aviaries. Br. Poult. Sci. 44, 775–776 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Mazaheri, A., Lierz, M. & Hafez, H. M. Investigation on the pathogenicity of Erysipelothrix rhusiopathiae in laying hens. Avian Dis. 49, 574–576 (2005).

    PubMed 

    Google Scholar 

  • Patel, S. N., Clayton, N. S. & Krebs, J. R. Spatial studying induces neurogenesis within the avian mind. Behav. Mind Res. 89, 115–128 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • LaDage, L. D., Roth, T. C., Fox, R. A. & Pravosudov, V. V. Ecologically-relevant spatial reminiscence use modulates hippocampal neurogenesis. Proc. R. Soc. B 277, 1071–1079 (2010).

    PubMed 

    Google Scholar 

  • Medvecky, M. et al. Entire genome sequencing and performance prediction of 133 intestine anaerobes remoted from rooster caecum in pure cultures. BMC Genom. 19, 561 (2018).

    Google Scholar 

  • Kubasova, T. et al. Contact with grownup hen impacts improvement of caecal microbiota in newly hatched chicks. PLoS ONE 14, e0212446 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Richards, P., Fothergill, J., Bernardeau, M. & Wigley, P. Growth of the caecal microbiota in three broiler breeds. Entrance. Vet. Sci. 6, 201 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pedroso, A. A., Menten, J. F. M. & Lambais, M. R. The construction of bacterial neighborhood within the intestines of newly hatched chicks. J. Appl. Poultry Res. 14, 232–237 (2005).

    Google Scholar 

  • FAWC. Vol. Report 1 (ed Meals & Rural Affairs Division for Atmosphere), https://www.gov.uk/authorities/uploads/system/uploads/attachment_data/file/319292/Farm_Animal_Welfare_in_Great_Britain_-_Past__Present_and_Future.pdf.,2009

  • Facebook
    Twitter
    Pinterest
    WhatsApp
    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments