Monday, September 26, 2022
HomeBiochemistryMolecular insights on ar-turmerone as a structural, practical and pharmacophoric analogue of...

Molecular insights on ar-turmerone as a structural, practical and pharmacophoric analogue of artificial mosquito repellent DEET by complete computational evaluation

Facebook
Twitter
Pinterest
WhatsApp

  • Gertler, S. N,N-Diethylbenzamide as an insect repellent. Google Patents 1 (1944).

  • Deletre, E., Martin, T., Duménil, C. & Chandre, F. Insecticide resistance modifies mosquito response to DEET and pure repellents. Parasit. Vectors 12, 1–10 (2019).

    Article 

    Google Scholar 

  • Abd-Ella, A. et al. The repellent DEET potentiates carbamate results by way of insect muscarinic receptor interactions: An alternate technique to manage insect vector-borne illnesses. PLoS ONE 10, e0126406 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Swale, D. R. & Bloomquist, J. R. Is DEET a harmful neurotoxicant?. Pest Manag. Sci. 75, 2068–2070 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Costanzo, S. D., Watkinson, A. J., Murby, E. J., Kolpin, D. W. & Sandstrom, M. W. Is there a danger related to the insect repellent DEET (N, N-diethyl-m-toluamide) generally present in aquatic environments?. Sci. Complete Environ. 384, 214–220 (2007).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Tsitsanou, Ok. E. et al. Anopheles gambiae odorant binding protein crystal advanced with the artificial repellent DEET: Implications for structure-based design of novel mosquito repellents. Cell. Mol. Life Sci. 69, 283–297 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Murphy, E. J., Sales space, J. C., Davrazou, F., Port, A. M. & Jones, D. N. M. Interactions of Anopheles gambiae Odorant-binding Proteins with a Human-derived Repellent: implications for the mode of motion of n, n-diethyl-3-methylbenzamide (DEET)*. J. Biol. Chem. 288, 4475 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Petherick, A. How DEET jams bugs’ scent sensors. Nature https://doi.org/10.1038/NEWS.2008.672 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Ditzen, M., Pellegrino, M. & Vosshall, L. B. Insect odorant receptors are molecular targets of the insect repellent DEET. Science 319, 1838–1841 (2008).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chidambaram, S. Ok. et al. Tyrosinase-mediated synthesis of larvicidal lively 1,5-diphenyl pent-4-en-1-one derivatives in opposition to Culex quinquefasciatus and investigation of their ichthyotoxicity. Sci. Rep. 11, 1–18 (2021).

    Article 
    CAS 

    Google Scholar 

  • Benelli, G. Analysis in mosquito management: present challenges for a brighter future. Parasitol. Res. 114, 2801–2805 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Benelli, G. & Pavela, R. Past mosquitoes: Important oil toxicity and repellency in opposition to bloodsucking bugs. Ind. Crops Prod. 117, 382–392 (2018).

    CAS 
    Article 

    Google Scholar 

  • Benelli, G. Analysis in mosquito management: Present challenges for a brighter future. Parasitol. Res. 114, 2801–2805 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Gaddaguti, V., Venkateswara Rao, T. & Prasada Rao, A. Potential mosquito repellent compounds of Ocimum species in opposition to 3N7H and 3Q8I of Anopheles gambiae. 3 Biotech 6, 1–8 (2016).

    Article 

    Google Scholar 

  • Okoli, B. J., Ladan, Z. & Mtunzi, F. Effectivity utilizing molecular docking strategy and research of the mosquito repellent. Bugs 12, 1061 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Panneerselvam, C., Murugan, Ok., Kovendan, Ok. & Kumar, P. M. Mosquito larvicidal, pupicidal, adulticidal, and repellent exercise of Artemisia nilagirica (Household: Compositae) in opposition to Anopheles stephensi and Aedes aegypti. Parasitol. Res. 111, 2241–2251 (2012).

    PubMed 
    Article 

    Google Scholar 

  • Reichert, W. et al. Repellency evaluation of Nepeta cataria important oils and remoted nepetalactones on Aedes aegypti. Sci. Rep. 9, 1–9 (2019).

    Article 
    CAS 

    Google Scholar 

  • Zographos, S. E., Eliopoulos, E., Thireou, T. & Tsitsanou, Ok. E. OBP structure-aided repellent discovery: An rising instrument for prevention of mosquito-borne illnesses. Comput. Des. Chem. Management Mosquitoes Their Dis. 65, 106–126. https://doi.org/10.4324/9781315151656-3 (2017).

    Article 

    Google Scholar 

  • Matiadis, D. et al. Curcumin derivatives as potential mosquito larvicidal brokers in opposition to two mosquito vectors, culex pipiens and aedes albopictus. Int. J. Mol. Sci. 22, 8915 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sagnou, M. et al. Analysis of naturally occurring curcuminoids and associated compounds in opposition to mosquito larvae. Acta Trop. 123, 190–195 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Abbasi, M. A. et al. Curcumin and its derivatives: Average inhibitors of acetylcholinesterase, butyrylcholinesterase and trypsin. Sci. Iran. 19, 1580–1583 (2012).

    CAS 
    Article 

    Google Scholar 

  • Salehi, B. et al. The therapeutic potential of curcumin: A assessment of medical trials. Eur. J. Med. Chem. 163, 527–545 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Renuga Parameswari, A., Rajalakshmi, G. & Kumaradhas, P. A mixed molecular docking and cost density evaluation is a brand new strategy for medicinal analysis to know drug-receptor interplay: Curcumin-AChE mannequin. Chemico 225, 21–31 (2015).

    CAS 

    Google Scholar 

  • Rao, P., Goswami, D. & Rawal Id, R. M. Extending the lore of curcumin as dipteran Butyrylcholine esterase (BChE) inhibitor: A holistic molecular interaction evaluation. PLoS ONE 17, e0269036 (2022).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rao, P., Goswami, D. & Rawal, R. M. Revealing the molecular interaction of curcumin as Culex pipiens Acetylcholine esterase 1 (AChE1) inhibitor. Sci. Rep. 11, 1–18 (2021).

    Article 
    CAS 

    Google Scholar 

  • Sneha, A., Nidhi, H. & Aniket, J. Formulation of pure mosquito repellent. Int. J. Adv. Res. 4, 11–17 (2018).

    Google Scholar 

  • Das, N. G. et al. Synergistic mosquito-repellent exercise of Curcuma longa, Pogostemon heyneanus and Zanthoxylum limonella important oils. J. Infect. Public Well being 8, 323–328 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Su, H. C. F., Horvat, R. & Jilani, G. Isolation, purification, and characterization of insect repellents from Curcuma longa L. J. Agric. Meals Chem. 30, 290–292 (1982).

    CAS 
    Article 

    Google Scholar 

  • Ali, A., Wang, Y. H. & Khan, I. A. Larvicidal and biting deterrent exercise of important oils of Curcuma longa, Ar-turmerone, and Curcuminoids in opposition to Aedes aegypti and anopheles quadrimaculatus (Culicidae: Diptera). J. Med. Entomol. 52, 979–986 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mohanraj, Ok. et al. IMPPAT: A curated database of Indian Medicinal Crops Phytochemistry and Therapeutics. Sci. Rep. 8, 4329 (2018).

    ADS 
    MathSciNet 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • WHO. International Vector Management Response (WHO, 2020).

    Google Scholar 

  • Niang, E. H. A., Bassene, H., Fenollar, F. & Mediannikov, O. Organic management of mosquito-borne illnesses: The potential of wolbachia-based interventions in an IVM framework. J. Trop. Med. 2018, 1–15 (2018).

    Article 

    Google Scholar 

  • Rocklöv, J. & Dubrow, R. Local weather change: A permanent problem for vector-borne illness prevention and management. Nat. Immunol. 21, 479–483 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Thireou, T. et al. Identification of novel bioinspired artificial mosquito repellents by mixed ligand-based screening and OBP-structure-based molecular docking. Insect Biochem. Mol. Biol. 98, 48–61 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Da Costa, Ok. S. et al. Exploring the potentiality of pure merchandise from important oils as inhibitors of odorant-binding proteins: A structure- and ligand-based digital screening strategy to search out novel mosquito repellents. ACS Omega 4, 22475–22486 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Duarte, C., Barreiro, E. & Fraga, C. Privileged buildings: A helpful idea for the rational design of latest lead drug candidates. Mini-Rev. Med. Chem. 7, 1108–1119 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Pradeepkiran, J. A., Reddy, A. P. & Reddy, P. H. Pharmacophore-based fashions for therapeutic medication in opposition to phosphorylated tau in Alzheimer’s illness. Drug Discov. Immediately 24, 616–623 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wermuth, C. G. Similarity in medication: reflections on analogue design. Drug Discov. Immediately 11, 348–354 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Shukla, A. et al. Exemplifying the subsequent era of antibiotic susceptibility intensifiers of phytochemicals by LasR-mediated quorum sensing inhibition. Sci. Rep. 11, 1–23 (2021).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Parmar, P. et al. Meticulous evaluation of pure compounds from NPASS database for figuring out analogue of GRL0617, the one identified inhibitor for SARS-CoV2 papain-like protease (PLpro) utilizing rigorous computational workflow. Mol. Divers. https://doi.org/10.1007/s11030-021-10233-3 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Patel, R. et al. Repurposing the antibacterial medication for inhibition of SARS-CoV2-PLpro utilizing molecular docking, MD simulation and binding power calculation. Mol. Divers. https://doi.org/10.1007/s11030-021-10325-0 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Goswami, D. Comparative evaluation of RNA-dependent RNA polymerase (RdRp) inhibitors below medical trials to manage SARS-CoV2 utilizing rigorous computational workflow. RSC Adv. 11, 29015–29028 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Skariyachan, S., Gopal, D., Muddebihalkar, A. G., Uttarkar, A. & Niranjan, V. Structural insights on the interplay potential of pure leads in opposition to main protein targets of SARS-CoV-2: Molecular modelling, docking and dynamic simulation research. Comput. Biol. Med. 132, 104325 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Prajapati, J. et al. Perceiving SARS-CoV-2 Mpro and PLpro twin inhibitors from pool of acknowledged antiviral compounds of endophytic microbes: an in silico simulation research. Struct. Chem. 1, 1–25 (2022).

    Google Scholar 

  • Singh, R., Bhardwaj, V. Ok., Das, P. & Purohit, R. A computational strategy for rational discovery of inhibitors for non-structural protein 1 of SARS-CoV-2. Comput. Biol. Med. 135, 104555 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Singh, R., Bhardwaj, V. Ok., Sharma, J., Kumar, D. & Purohit, R. Identification of potential plant bioactive as SARS-CoV-2 Spike protein and human ACE2 fusion inhibitors. Comput. Biol. Med. 136, 104631 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Shelley, J. C. et al. Epik: A software program program for pKa prediction and protonation state era for drug-like molecules. J. Comput. Aided. Mol. Des. 21, 681–691 (2007).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Greenwood, J. R., Calkins, D., Sullivan, A. P. & Shelley, J. C. In direction of the excellent, speedy, and correct prediction of the favorable tautomeric states of drug-like molecules in aqueous resolution. J. Comput. Aided Mol. Des. 24, 591–604 (2010).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Jorgensen, W. L. & Tirado-Rives, J. The OPLS potential features for proteins. Power minimizations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc. 110, 1657–1666 (1988).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Jorgensen, W. L., Maxwell, D. S. & Tirado-Rives, J. Improvement and testing of the OPLS all-atom power subject on conformational energetics and properties of natural liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996).

    CAS 
    Article 

    Google Scholar 

  • Shivakumar, D. et al. Prediction of absolute solvation free energies utilizing molecular dynamics free power perturbation and the OPLS power subject. ACS Publ. 6, 1509–1519 (2010).

    CAS 

    Google Scholar 

  • Friesner, R. A. et al. Further precision glide: Docking and scoring incorporating a mannequin of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem. 49, 6177–6196 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Halgren, T. New methodology for quick and correct binding-site identification and evaluation. Chem. Biol. Drug Des. 69, 146–148 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bowers, Ok. J. et al. Scalable algorithms for molecular dynamics simulations on commodity clusters. In Proceedings of the 2006 ACM/IEEE Convention on Supercomputing, SC’06 84 (ACM Press, 2006). https://doi.org/10.1145/1188455.1188544.

  • Wang, W., Donini, O., Reyes, C. M. & Kollman, P. A. Biomolecular simulations: Latest developments in power fields, simulations of enzyme catalysis, protein-ligand, protein-protein, and protein-nucleic acid noncovalent interactions. Annu. Rev. Biophys. Biomol. Struct. 30, 211–243 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wang, J., Hou, T. & Xu, X. Latest advances in free power calculations with a mixture of molecular mechanics and continuum fashions. Curr. Comput. Aided-Drug Des. 2, 287–306 (2006).

    CAS 
    Article 

    Google Scholar 

  • Kollman, P. A. et al. Calculating buildings and free energies of advanced molecules: Combining molecular mechanics and continuum fashions. Acc. Chem. Res. 33, 889–897 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Massova, I. & Kollman, P. A. Mixed molecular mechanical and continuum solvent strategy (MM- PBSA/GBSA) to foretell ligand binding. Perspect. Drug Discov. Des. 18, 113–135 (2000).

    CAS 
    Article 

    Google Scholar 

  • Chikhale, R. V. et al. In-silico investigation of phytochemicals from Asparagus racemosus as believable antiviral agent in COVID-19. J. Biomol. Struct. Dyn. 1, 15. https://doi.org/10.1080/07391102.2020.1784289 (2020).

    CAS 
    Article 

    Google Scholar 

  • Pires, D. E. V., Blundell, T. L. & Ascher, D. B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties utilizing graph-based signatures. J. Med. Chem. 58, 4066–4072 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Facebook
    Twitter
    Pinterest
    WhatsApp
    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments