Monday, September 26, 2022
HomeChemistryMechanism of C-N bonds formation in electrocatalytic urea manufacturing revealed by ab...

Mechanism of C-N bonds formation in electrocatalytic urea manufacturing revealed by ab initio molecular dynamics simulation

Facebook
Twitter
Pinterest
WhatsApp

  • Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z. & Winiwarter, W. How a century of ammonia synthesis modified the world. Nat. Geosci. 1, 636–639 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Chen, J. G. et al. Past fossil fuel-driven nitrogen transformations. Science 360, eaar6611 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Duca, M. & Koper, M. T. M. Powering denitrification: the views of electrocatalytic nitrate discount. Vitality Environ. Sci. 5, 9726–9742 (2012).

    CAS 
    Article 

    Google Scholar 

  • Montoya, J. H. et al. Supplies for photo voltaic fuels and chemical substances. Nat. Mater. 16, 70–81 (2016).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Schiffer, Z. J. & Manthiram, Ok. Electrification and decarbonization of the chemical business. Joule 1, 10–14 (2017).

    Article 

    Google Scholar 

  • Comer, B. M. et al. Prospects and challenges for photo voltaic fertilizers. Joule 3, 1578–1605 (2019).

    CAS 
    Article 

    Google Scholar 

  • Katelhon, A., Meys, R., Deutz, S., Suh, S. & Bardow, A. Local weather change mitigation potential of carbon seize and utilization within the chemical business. Proc. Natl Acad. Sci. U. S. A. 116, 11187–11194 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Foster, S. L. et al. Catalysts for nitrogen discount to ammonia. Nat. Catal. 1, 490–500 (2018).

    Article 

    Google Scholar 

  • Liu, X., Jiao, Y., Zheng, Y., Jaroniec, M. & Qiao, S. Z. Build up an image of the electrocatalytic nitrogen discount exercise of transition steel single-atom catalysts. J. Am. Chem. Soc. 141, 9664–9672 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Liu, X., Jiao, Y., Zheng, Y. & Qiao, S.-Z. Remoted boron websites for electroreduction of dinitrogen to ammonia. ACS Catal. 10, 1847–1854 (2020).

    CAS 
    Article 

    Google Scholar 

  • Suryanto, B. H. R. et al. Challenges and prospects within the catalysis of electroreduction of nitrogen to ammonia. Nat. Catal. 2, 290–296 (2019).

    CAS 
    Article 

    Google Scholar 

  • Skulason, E. et al. A theoretical analysis of attainable transition steel electro-catalysts for N2 discount. Phys. Chem. Chem. Phys. 14, 1235–1245 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • van Langevelde, P. H., Katsounaros, I. & Koper, M. T. M. Electrocatalytic nitrate discount for sustainable ammonia manufacturing. Joule 5, 290–294 (2021).

    Article 

    Google Scholar 

  • Zhang, X. et al. Latest advances in non-noble steel electrocatalysts for nitrate discount. Chem. Eng. J. 403, 126269 (2021).

    CAS 
    Article 

    Google Scholar 

  • Chen, G.-F. et al. Electrochemical discount of nitrate to ammonia by way of direct eight-electron switch utilizing a copper–molecular stable catalyst. Nat. Vitality 5, 605–613 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Chen, C. et al. Coupling N2 and CO2 in H2O to synthesize urea underneath ambient situations. Nat. Chem. 12, 717–724 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Shibata, M., Yoshida, Ok. & Furuya, N. Electrochemical synthesis of urea on discount of carbon dioxide with nitrate and nitrite ions utilizing Cu-loaded gas-diffusion electrode. J. Electroanal. Chem. 387, 143–145 (1995).

    Article 

    Google Scholar 

  • Shibata, M., Yoshida, Ok. & Furuya, N. Electrochemical synthesis of urea at gas-diffusion electrodes III. simultaneous discount of carbon dioxide and nitrite ions with numerous steel catalysts. J. Electrochem. Soc. 145, 595–600 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Shibata, M., Yoshida, Ok. & Furuya, N. Electrochemical synthesis of urea at gas-diffusion electrodes. J. Electroanal. Chem. 442, 67–72 (1998).

    CAS 
    Article 

    Google Scholar 

  • Shibata, M. & Furuya, N. Electrochemical synthesis of urea at gas-diffusion electrodes. J. Electroanal. Chem. 507, 177–184 (2001).

    CAS 
    Article 

    Google Scholar 

  • Shibata, M. & Furuya, N. Simultaneous discount of carbon dioxide and nitrate ions at gas-diffusion electrodes with numerous metallophthalocyanine catalysts. Electrochim. Acta 48, 3953–3958 (2003).

    CAS 
    Article 

    Google Scholar 

  • Saravanakumar, D., Tune, J., Lee, S., Hur, N. H. & Shin, W. Electrocatalytic conversion of carbon dioxide and nitrate ions to urea by a titania-nafion composite electrode. ChemSusChem 10, 3999–4003 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cao, N. et al. Oxygen vacancies enhanced cooperative electrocatalytic discount of carbon dioxide and nitrite ions to urea. J. Colloid Interface Sci. 577, 109–114 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Jouny, M. et al. Formation of carbon-nitrogen bonds in carbon monoxide electrolysis. Nat. Chem. 11, 846–851 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Pattabiraman, V. R. & Bode, J. W. Rethinking amide bond synthesis. Nature 480, 471–479 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bariwal, J. & Van der Eycken, E. C-N bond forming cross-coupling reactions: an summary. Chem. Soc. Rev. 42, 9283–9303 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Nørskov, J. Ok. et al. Origin of the overpotential for oxygen discount at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article 
    CAS 

    Google Scholar 

  • Liu, X., Jiao, Y., Zheng, Y., Davey, Ok. & Qiao, S.-Z. A computational research on Pt and Ru dimers supported on graphene for the hydrogen evolution response: new perception into the alkaline mechanism. J. Mater. Chem. A 7, 3648–3654 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Peterson, A. A., Abild-Pedersen, F., Studt, F., Rossmeisl, J. & Nørskov, J. Ok. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Vitality Environ. Sci. 3, 1311–1315 (2010).

    CAS 
    Article 

    Google Scholar 

  • Montoya, J. H., Shi, C., Chan, Ok. & Norskov, J. Ok. Theoretical insights right into a CO dimerization mechanism in CO2 electroreduction. J. Phys. Chem. Lett. 6, 2032–2037 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Goodpaster, J. D., Bell, A. T. & Head-Gordon, M. Identification of attainable pathways for C-C bond formation throughout electrochemical discount of CO2: new theoretical insights from an improved electrochemical mannequin. J. Phys. Chem. Lett. 7, 1471–1477 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Nie, X., Esopi, M. R., Janik, M. J. & Asthagiri, A. Selectivity of CO(2) discount on copper electrodes: the position of the kinetics of elementary steps. Angew. Chem. Int. Ed. 52, 2459–2462 (2013).

    CAS 
    Article 

    Google Scholar 

  • Bagger, A., Arnarson, L., Hansen, M. H., Spohr, E. & Rossmeisl, J. Electrochemical CO discount: a property of the electrochemical interface. J. Am. Chem. Soc. 141, 1506–1514 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cheng, T., Xiao, H. & Goddard, W. A. Full atomistic response mechanism with kinetics for CO discount on Cu(100) from ab initio molecular dynamics free-energy calculations at 298 Ok. Proc. Natl Acad. Sci. U. S. A. 114, 1795–1800 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Cheng, T., Xiao, H. & Goddard, W. A. Response mechanisms for the electrochemical discount of CO2 to CO and formate on the Cu(100) floor at 298 Ok from quantum mechanics free vitality calculations with express water. J. Am. Chem. Soc. 138, 13802–13805 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cheng, T., Xiao, H. & Goddard, W. A. Free-Vitality limitations and response mechanisms for the electrochemical discount of CO on the Cu(100) Floor, together with a number of layers of express solvent at pH 0. J. Phys. Chem. Lett. 6, 4767–4773 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sheng, T. & Solar, S.-G. Electrochemical discount of CO2 into CO on Cu(100): a brand new perception into the C–O bond breaking mechanism. Chem. Commun. 53, 2594–2597 (2017).

    CAS 
    Article 

    Google Scholar 

  • Zhao, X. & Liu, Y. Unveiling the energetic construction of single nickel atom catalysis: important roles of cost capability and hydrogen bonding. J. Am. Chem. Soc. 142, 5773–5777 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Trasatti, S. J. P. & Chemistry, A. Absolutely the electrode potential: an explanatory word (Suggestions 1986). Pure Appl. Chem. 58, 955–966 (1986).

    CAS 
    Article 

    Google Scholar 

  • Łukomska, A. & Sobkowski, J. Potential of zero cost of monocrystalline copper electrodes in perchlorate options. J. Electroanal. Chem. 567, 95–102 (2004).

    Article 
    CAS 

    Google Scholar 

  • Shin, H., Jung, S., Bae, S., Lee, W. & Kim, H. Nitrite discount mechanism on a Pd floor. Environ. Sci. Technol. 48, 12768–12774 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Liu, X. et al. Understanding tendencies in electrochemical carbon dioxide discount charges. Nat. Commun. 8, 15438 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kim, Y.-G. et al. Floor reconstruction of pure-Cu single-crystal electrodes underneath CO-reduction potentials in alkaline options: a research by seriatim ECSTM-DEMS. J. Electroanal. Chem. 780, 290–295 (2016).

    CAS 
    Article 

    Google Scholar 

  • Lengthy, J. et al. Direct electrochemical ammonia synthesis from nitric oxide. Angew. Chem. Int. Ed. 59, 9711–9718 (2020).

    CAS 
    Article 

    Google Scholar 

  • Wang, Y., Zhou, W., Jia, R., Yu, Y. & Zhang, B. Unveiling the exercise origin of a copper-based electrocatalyst for selective nitrate discount to ammonia. Angew. Chem. Int. Ed. 59, 5350–5354 (2020).

    CAS 
    Article 

    Google Scholar 

  • Pérez-Gallent, E., Figueiredo, M. C., Katsounaros, I. & Koper, M. T. M. Electrocatalytic discount of nitrate on copper single crystals in acidic and alkaline options. Electrochim. Acta 227, 77–84 (2017).

    Article 
    CAS 

    Google Scholar 

  • Butcher, D. P. & Gewirth, A. A. Nitrate discount pathways on Cu single crystal surfaces: Impact of oxide and Cl. Nano Vitality 29, 457–465 (2016).

    CAS 
    Article 

    Google Scholar 

  • Yao, Y., Zhu, S., Wang, H., Li, H. & Shao, M. A Spectroscopic research of electrochemical nitrogen and nitrate discount on rhodium surfaces. Angew. Chem. Int. Ed. 59, 10479–10483 (2020).

    CAS 
    Article 

    Google Scholar 

  • Schouten, Ok. J., Qin, Z., Perez Gallent, E. & Koper, M. T. Two pathways for the formation of ethylene in CO discount on single-crystal copper electrodes. J. Am. Chem. Soc. 134, 9864–9867 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gattrell, M., Gupta, N. & Co, A. A overview of the aqueous electrochemical discount of CO2 to hydrocarbons at copper. J. Electroanal. Chem. 594, 1–19 (2006).

    CAS 
    Article 

    Google Scholar 

  • Perez-Gallent, E., Marcandalli, G., Figueiredo, M. C., Calle-Vallejo, F. & Koper, M. T. M. Construction- and potential-dependent cation results on CO discount at copper single-crystal electrodes. J. Am. Chem. Soc. 139, 16412–16419 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Peng, H. et al. The position of atomic carbon in directing electrochemical CO(2) discount to multicarbon merchandise. Vitality Environ. Sci. 14, 473–482 (2021).

    CAS 
    Article 

    Google Scholar 

  • Jouny, M., Hutchings, G. S. & Jiao, F. Carbon monoxide electroreduction as an rising platform for carbon utilization. Nat. Catal. 2, 1062–1070 (2019).

    CAS 
    Article 

    Google Scholar 

  • Rosca, V., Duca, M., de Groot, M. T. & Koper, M. T. Nitrogen cycle electrocatalysis. Chem. Rev. 109, 2209–2244 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B: Condens. Matter 47, 558–561 (1993).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal−amorphous-semiconductor transition in germanium. Phys. Rev. B: Condens. Matter 49, 14251–14269 (1994).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Kresse, G. & Furthmüller, J. Environment friendly iterative schemes for ab initio total-energy calculations utilizing a plane-wave foundation set. Phys. Rev. B: Condens. Matter 54, 11169–11186 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Kresse, G. & Furthmüller, J. Effectivity of ab-initio whole vitality calculations for metals and semiconductors utilizing a plane-wave foundation set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS 
    Article 

    Google Scholar 

  • Perdew, J. P., Burke, Ok. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865–3868 (1996).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Grimme, S., Ehrlich, S. & Goerigk, L. Impact of the damping perform in dispersion corrected density practical principle. J. Comput. Chem. 32, 1456–1465 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Carter, E. A., Ciccotti, G., Hynes, J. T. & Kapral, R. Constrained response coordinate dynamics for the simulation of uncommon occasions. Chem. Phys. Lett. 156, 472–477 (1989).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Facebook
    Twitter
    Pinterest
    WhatsApp
    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments