Monday, September 26, 2022
HomeMicrobiologyLengthy-term ecological and evolutionary dynamics within the intestine microbiomes of carbapenemase-producing Enterobacteriaceae...

Lengthy-term ecological and evolutionary dynamics within the intestine microbiomes of carbapenemase-producing Enterobacteriaceae colonized topics

Facebook
Twitter
Pinterest
WhatsApp

  • von Wintersdorff, C. J. et al. Dissemination of antimicrobial resistance in microbial ecosystems via horizontal gene switch. Entrance. Microbiol. 7, 173 (2016).

    Google Scholar 

  • Suay-García, B. & Pérez-Gracia, M. T. Current and way forward for carbapenem-resistant Enterobacteriaceae (CRE) infections. Antibiotics 8, 122 (2019).

    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Blair, J. M., Webber, M. A., Baylay, A. J., Ogbolu, D. O. & Piddock, L. J. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 13, 42–51 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Codjoe, F. S. & Donkor, E. S. Carbapenem resistance: a overview. Med Sci. 6, 1 (2017).

    Google Scholar 

  • Schechner, V. et al. Asymptomatic rectal carriage of blaKPC producing carbapenem-resistant Enterobacteriaceae: who’s liable to develop into clinically contaminated? Clin. Microbiol. Infect. 19, 451–456 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Penders, J., Stobberingh, E. E., Savelkoul, P. H. & Wolffs, P. F. The human microbiome as a reservoir of antimicrobial resistance. Entrance Microbiol. 4, 87 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Nordmann, P., Naas, T. & Poirel, L. International unfold of Carbapenemase-producing Enterobacteriaceae. Emerg. Infect. Dis. 17, 1791–1798 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Tooke, C. L. et al. β-Lactamases and β-lactamase inhibitors within the twenty first century. J. Mol. Biol. 431, 3472–3500 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Solar, X. et al. Microbiota-derived metabolic components cut back campylobacteriosis in mice. Gastroenterology 154, 1751–1763.e2 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ichinohe, T. et al. Microbiota regulates immune protection towards respiratory tract influenza A virus an infection. Proc. Natl Acad. Sci. USA 108, 5354–5359 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Buffie, C. G. et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517, 205–208 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lieberman, T. D. et al. Parallel bacterial evolution inside a number of sufferers identifies candidate pathogenicity genes. Nat. Genet. 43, 1275–1280 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Garud, N. R., Good, B. H., Hallatschek, O. & Pollard, Ok. S. Evolutionary dynamics of micro organism within the intestine microbiome inside and throughout hosts. PLoS Biol. 17, e3000102 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Chu, N. D., Smith, M. B., Perrotta, A. R., Kassam, Z. & Alm, E. J. Profiling dwelling micro organism informs preparation of fecal microbiota transplantations. PLoS ONE 12, e0170922 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Ferreiro, A., Criminal, N., Gasparrini, A. J. & Dantas, G. Multiscale evolutionary dynamics of host-associated microbiomes. Cell 172, 1216–1227 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Mo, Y. et al. Period of carbapenemase-producing Enterobacteriaceae carriage in hospital sufferers. Emerg. Infect. Dis. 26, 2182–2185 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Haverkate, M. R. et al. Period of colonization with Klebsiella pneumoniae carbapenemase-producing micro organism at long-term acute care hospitals in Chicago, Illinois. Open Discussion board Infect. Dis. 3, ofw178 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Korach-Rechtman, H. et al. Intestinal dysbiosis in carriers of carbapenem-resistant Enterobacteriaceae. mSphere 5, e00173–20 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Yoshida, N. et al. Bacteroides vulgatus and Bacteroides dorei cut back intestine microbial lipopolysaccharide manufacturing and inhibit atherosclerosis. Circulation 138, 2486–2498 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lenoir, M. et al. Butyrate mediates anti-inflammatory results of. Intestine Microbes 12, 1–16 (2020).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Riedel, C. U. et al. Anti-inflammatory results of bifidobacteria by inhibition of LPS-induced NF-κB activation. World J. Gastroenterol. 12, 3729–3735 (2006).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zeng, M. Y., Inohara, N. & Nuñez, G. Mechanisms of inflammation-driven bacterial dysbiosis within the intestine. Mucosal Immunol. 10, 18–26 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Winter, S. E. & Bäumler, A. J. A panoramic feat: to compete with the intestine microbiota, Salmonella drives its host to supply a respiratory electron acceptor. Intestine Microbes 2, 58–60 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rivera-Chávez, F., Lopez, C. A. & Bäumler, A. J. Oxygen as a driver of intestine dysbiosis. Free Radic. Biol. Med. 105, 93–101 (2017).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Chng, Ok. R. et al. Metagenome-wide affiliation evaluation identifies microbial determinants of post-antibiotic ecological restoration within the intestine. Nat. Ecol. Evol. 4, 1256–1267 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Tenaillon, O., Skurnik, D., Picard, B. & Denamur, E. The inhabitants genetics of commensal Escherichia coli. Nat. Rev. Microbiol. 8, 207–217 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Stacy, A. et al. An infection trains the host for microbiota-enhanced resistance to pathogens. Cell 184, 615–627.e17 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Barreto, H. C., Sousa, A. & Gordo, I. The panorama of adaptive evolution of a intestine commensal micro organism in getting old mice. Curr. Biol. 30, 1102–1109.e5 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ernst, C. M. et al. Adaptive evolution of virulence and persistence in carbapenem-resistant Klebsiella pneumoniae. Nat. Med. 26, 705–711 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zhao, S. et al. Adaptive evolution inside intestine microbiomes of wholesome folks. Cell Host Microbe 25, 656–667.e8 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Warsi, O. M., Andersson, D. I. & Dykhuizen, D. E. Completely different adaptive methods in E. coli populations evolving underneath macronutrient limitation and metallic ion limitation. BMC Evol. Biol. 18, 72 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Hickman, R. A., Munck, C. & Sommer, M. O. A. Time-resolved monitoring of mutations reveals numerous allele dynamics throughout Escherichia coli antimicrobial adaptive evolution to single medication and drug pairs. Entrance. Microbiol. 8, 893 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Auriol, C., Bestel-Corre, G., Claude, J. B., Soucaille, P. & Meynial-Salles, I. Stress-induced evolution of Escherichia coli factors to authentic ideas in respiratory cofactor selectivity. Proc. Natl Acad. Sci. USA 108, 1278–1283 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Juers, D. H., Matthews, B. W. & Huber, R. E. LacZ β-galactosidase: construction and performance of an enzyme of historic and molecular organic significance. Protein Sci. 21, 1792–1807 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rogers, A. W. L., Tsolis, R. M. & Bäumler, A. J. Salmonella versus the microbiome. Microbiol. Mol. Biol. Rev. 85, e00027–19 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hughes, E. R. et al. Microbial respiration and formate oxidation as metabolic signatures of inflammation-associated dysbiosis. Cell Host Microbe 21, 208–219 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gupta, S., Allen-Vercoe, E. & Petrof, E. O. Fecal microbiota transplantation: in perspective. Ther. Adv. Gastroenterol. 9, 229–239 (2016).

    Article 

    Google Scholar 

  • Wortelboer, Ok., Nieuwdorp, M. & Herrema, H. Fecal microbiota transplantation past Clostridioides difficile infections. EBioMedicine 44, 716–729 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lee, S. M. et al. Bacterial colonization components management specificity and stability of the intestine microbiota. Nature 501, 426–429 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Martinson, J. N. V. et al. Rethinking intestine microbiome residency and the Enterobacteriaceae in wholesome human adults. ISME J. 13, 2306–2318 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Woyke, T., Doud, D. F. R. & Schulz, F. The trajectory of microbial single-cell sequencing. Nat. Strategies 14, 1045–1054 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Domingo, E. & Perales, C. Viral quasispecies. PLoS Genet. 15, e1008271 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Yamada, C. et al. Molecular perception into evolution of symbiosis between breast-fed infants and a member of the human intestine microbiome Bifidobacterium longum. Cell Chem. Biol. 24, 515–524.e5 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zerbino, D. R. & Birney, E. Velvet: algorithms for de novo brief learn meeting utilizing de Bruijn graphs. Genome Res. 18, 821–829 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gao, S., Bertrand, D., Chia, B. Ok. & Nagarajan, N. OPERA-LG: environment friendly and precise scaffolding of enormous, repeat-rich eukaryotic genomes with efficiency ensures. Genome Biol. 17, 102 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Gao, S., Bertrand, D. & Nagarajan, N. FinIS: improved in silico ending utilizing a precise quadratic programming formulation. Lect. Notes Comput. Sci. 7534, 314–325 (2012).

    Article 

    Google Scholar 

  • Li H. Aligning sequence reads, clone sequences and meeting contigs with BWA-MEM. arXiv 1303.3997v2 (2013).

  • Segata, N. et al. Metagenomic microbial neighborhood profiling utilizing distinctive clade-specific marker genes. Nat. Strategies 9, 811–814 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Franzosa, E. A. et al. Species-level purposeful profiling of metagenomes and metatranscriptomes. Nat. Strategies 15, 962–968 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Salter, S. J. et al. Reagent and laboratory contamination can critically influence sequence-based microbiome analyses. BMC Biol. 12, 87 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Segata, N. et al. Metagenomic biomarker discovery and clarification. Genome Biol. 12, R60 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hawinkel, S., Mattiello, F., Bijnens, L. & Thas, O. A damaged promise: microbiome differential abundance strategies don’t management the false discovery fee. Transient. Bioinformatics 20, 210–221 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Morton, J. T. et al. Establishing microbial composition measurement requirements with reference frames. Nat. Commun. 10, 2719 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Inouye, M. et al. SRST2: speedy genomic surveillance for public well being and hospital microbiology labs. Genome Med. 6, 90 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Alcock, B. P. et al. CARD 2020: antibiotic resistome surveillance with the great antibiotic resistance database. Nucleic Acids Res. 48, D517–D525 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kurtz, S. et al. Versatile and open software program for evaluating massive genomes. Genome Biol. 5, R12 (2004).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wilm, A. et al. LoFreq: a sequence-quality conscious, ultra-sensitive variant caller for uncovering cell-population heterogeneity from high-throughput sequencing datasets. Nucleic Acids Res. 40, 11189–11201 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hinrichs, A. S. et al. The UCSC Genome Browser Database: replace 2006. Nucleic Acids Res. 34, D590–D598 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Pracana, R., Priyam, A., Levantis, I., Nichols, R. A. & Wurm, Y. The hearth ant social chromosome supergene variant Sb exhibits low range however excessive divergence from SB. Mol. Ecol. 26, 2864–2879 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Quinlan, A. R. BEDTools: the Swiss-Military software for genome characteristic evaluation. Curr. Protoc. Bioinformatics 47, 11.12.1–34 (2014).

    Article 

    Google Scholar 

  • Spedicato, G. Discrete time Markov chains with R. R J. 9.2, 84 (2017).

    Article 

    Google Scholar 

  • Cingolani, P. et al. A program for annotating and predicting the consequences of single nucleotide polymorphisms, SnpEff: SNPs within the genome of Drosophila melanogaster pressure w1118; iso-2; iso-3. Fly 6, 80–92 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hahsler, M., Piekenbrock, M. & Doran, D. dbscan: quick density-based clustering with R. J. Stat. Softw. 91, 1–30 (2019).

    Article 

    Google Scholar 

  • Galata, V., Fehlmann, T., Backes, C. & Keller, A. PLSDB: a useful resource of full bacterial plasmids. Nucleic Acids Res. 47, D195–D202 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ondov, B. D. et al. Mash: quick genome and metagenome distance estimation utilizing MinHash. Genome Biol. 17, 132 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Quan, S. et al. Adaptive evolution of the lactose utilization community in experimentally advanced populations of Escherichia coli. PLoS Genet. 8, e1002444 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Tsuchido, T., VanBogelen, R. A. & Neidhardt, F. C. Warmth shock response in Escherichia coli influences cell division. Proc. Natl Acad. Sci. USA 83, 6959–6963 (1986).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Trubetskoy, D., Proux, F., Allemand, F., Dreyfus, M. & Iost, I. SrmB, a DEAD-box helicase concerned in Escherichia coli ribosome meeting, is particularly focused to 23S rRNA in vivo. Nucleic Acids Res. 37, 6540–6549 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Garoff, L., Huseby, D. L., Praski Alzrigat, L. & Hughes, D. Impact of aminoacyl-tRNA synthetase mutations on susceptibility to ciprofloxacin in Escherichia coli. J. Antimicrob. Chemother. 73, 3285–3292 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Aponte, R. A., Zimmermann, S. & Reinstein, J. Directed evolution of the DnaK chaperone: mutations within the lid area end in enhanced chaperone exercise. J. Mol. Biol. 399, 154–167 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mundhada, H. et al. Elevated manufacturing of l-serine in Escherichia coli via adaptive laboratory evolution. Metab. Eng. 39, 141–150 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Conrad, T. M. et al. RNA polymerase mutants discovered via adaptive evolution reprogram Escherichia coli for optimum progress in minimal media. Proc. Natl Acad. Sci. USA 107, 20500–20505 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Li, Y. et al. LPS reworking is an advanced survival technique for micro organism. Proc. Natl Acad. Sci. USA 109, 8716–8721 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Facebook
    Twitter
    Pinterest
    WhatsApp
    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments