Wednesday, September 28, 2022
HomeMicrobiologyLactococcus lactis engineered to ship hCAP18 cDNA alleviates DNBS-induced colitis in C57BL/6...

Lactococcus lactis engineered to ship hCAP18 cDNA alleviates DNBS-induced colitis in C57BL/6 mice by selling IL17A and IL10 cytokine expression

Facebook
Twitter
Pinterest
WhatsApp

  • Khan, I. et al. Alteration of intestine microbiota in inflammatory bowel illness (IBD): Trigger or consequence? IBD remedy concentrating on the intestine microbiome. Pathogens 8, 126 (2019).

    CAS 
    PubMed Central 
    Article 

    Google Scholar 

  • Nishida, A. et al. Intestine microbiota within the pathogenesis of inflammatory bowel illness. Clin. J. Gastroenterol. 11, 1–10 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Zhang, M. et al. Interactions between intestinal microbiota and host immune response in inflammatory bowel illness. Entrance. Immunol. 8, 1 (2017).

    Google Scholar 

  • Kahlenberg, J. M. & Kaplan, M. J. Little peptide, massive results: The function of LL-37 in irritation and autoimmune illness. J. Immunol. 191, 4895–4901 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hancock, R. E. W. & Falla, T. J. Antimicrobial peptides: Broad-spectrum antibiotics from nature the cationic peptides of nature. Clin. Microbiol. Infect. 1, 226–229 (1996).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Diamond, G., Beckloff, N., Weinberg, A. & Kisich, Ok. The roles of antimicrobial peptides in innate host protection. Curr. Pharm. Des. 15, 2377–2392 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Niyonsaba, F. et al. Antimicrobial peptides human β-defensins stimulate epidermal keratinocyte migration, proliferation and manufacturing of proinflammatory cytokines and chemokines. J. Make investments. Dermatol. 127, 594–604 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Oppenheim, J. J., Biragyn, A., Kwak, L. W. & Yang, D. Roles of antimicrobial peptides akin to defensins in innate and adaptive immunity. Ann. Rheum. Dis. 62, 17–21 (2003).

    Article 

    Google Scholar 

  • Ho, S., Pothoulakis, C. & Wai Koon, H. Antimicrobial peptides and colitis. Curr. Pharm. Des. 19, 40–47 (2012).

    Google Scholar 

  • Maeda, T. et al. Low concentrations of human neutrophil peptide ameliorate experimental murine colitis. Int. J. Mol. Med. 38, 1777–1785 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Tran, D.H.-N. et al. Circulating cathelicidin ranges correlate with mucosal illness exercise in ulcerative colitis, danger of intestinal stricture in Crohn’s illness, and scientific prognosis in inflammatory bowel illness. BMC Gastroenterol. 17, 63 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Mwangi, J., Hao, X., Lai, R. & Zhang, Z. Y. Antimicrobial peptides: New hope within the conflict towards multidrug resistance. Zool. Res. 40, 488–505 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wang, S., Zeng, X., Yang, Q. & Qiao, S. Antimicrobial peptides as potential alternate options to antibiotics in meals animal trade. Int. J. Mol. Sci. 17, 226–229 (2016).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Alford, M. A., Baquir, B., Santana, F. L., Haney, E. F. & Hancock, R. E. W. Cathelicidin host protection peptides and inflammatory signaling: Hanging a steadiness. Entrance. Microbiol. 11, 1902 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Cheng, Y. et al. Evolution of the avian β-defensin and cathelicidin genes. BMC Evol. Biol. 15, 1–17 (2015).

    Article 
    CAS 

    Google Scholar 

  • Huynh, E., Penney, J., Caswell, J. & Li, J. Protecting results of protegrin in dextran sodium sulfate-induced murine colitis. Entrance. Pharmacol. 10, 156 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wu, J. et al. A frog cathelicidin peptide successfully promotes cutaneous wound therapeutic in mice. Biochem. J. 475, 2785–2799 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Grönberg, A., Mahlapuu, M., Ståhle, M., Whately-Smith, C. & Rollman, O. Remedy with LL-37 is secure and efficient in enhancing therapeutic of hard-to-heal venous leg ulcers: A randomized, placebo-controlled scientific trial. Wound Restore Regen. 22, 613–621 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Sharifi, A., Hosseinzadeh-Attar, M. J., Vahedi, H. & Nedjat, S. A randomized managed trial on the impact of vitamin D3 on irritation and cathelicidin gene expression in ulcerative colitis sufferers. Saudi J. Gastroenterol. 22, 316–323 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Solar, L., Wang, W., Xiao, W. & Yang, H. The roles of cathelicidin LL-37 in inflammatory bowel illness. Inflamm. Bowel Dis. 22, 1986–1991 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Sørensen, O. E. et al. Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood 97, 3951–3959 (2001).

    PubMed 
    Article 

    Google Scholar 

  • Thennarasu, S. et al. Antimicrobial and membrane disrupting actions of a peptide derived from the human cathelicidin antimicrobial peptide ll37. Biophys. J. 98, 248–257 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Braff, M. H., Zaiou, M., Fierer, J., Nizet, V. & Gallo, R. L. Keratinocyte manufacturing of cathelicidin offers direct exercise towards bacterial pores and skin pathogens. Infect. Immun. 73, 6771–6781 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hiemstra, P. S., McCray, P. B. & Bals, R. The innate immune perform of airway epithelial cells in inflammatory lung illness. Eur. Respir. J. 45, 1150–1162 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gordon, Y. J. et al. Human cathelicidin (LL-37), a multifunctional peptide, is expressed by ocular floor epithelia and has potent antibacterial and antiviral exercise. Curr. Eye Res. 30, 385–394 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • De Yang, B. et al. LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, makes use of formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J. Exp. Med. 192, 1069–1074 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Yoo, J. H. et al. Antifibrogenic results of the antimicrobial peptide cathelicidin in murine colitis-associated fibrosis. Cell. Mol. Gastroenterol. Hepatol. 1, 55–74 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Park, H. J. et al. Collagen synthesis is suppressed in dermal fibroblasts by the human antimicrobial peptide LL-37. J. Make investments. Dermatol. 129, 843–850 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Fan, T. J. et al. Environmental components modify the severity of acute DSS colitis in caspase-11-deficient mice. Inflamm. Bowel Dis. 24, 2394–2403 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bilski, J. et al. Can train have an effect on the course of inflammatory bowel illness? Experimental and scientific proof. Pharmacol. Rep. 68, 827–836 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Sideri, A. et al. Results of weight problems on severity of colitis and cytokine expression in mouse mesenteric fats: Potential function of adiponectin receptor 1. Am. J. Physiol. Liver Physiol. 308, G591–G604 (2015).

    CAS 

    Google Scholar 

  • Llewellyn, S. R. et al. Interactions between eating regimen and the intestinal microbiota alter intestinal permeability and colitis severity in mice. Gastroenterology 154, 1037-1046.e2 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Munyaka, P. M., Eissa, N., Bernstein, C. N., Khafipour, E. & Ghia, J. E. Antepartum antibiotic remedy will increase offspring susceptibility to experimental colitis: A task of the intestine microbiota. PLoS ONE 10, e0142536 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Yoshimura, T. et al. The antimicrobial peptide CRAMP is crucial for colon homeostasis by sustaining microbiota steadiness. J. Immunol. 200, 2174–2185 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Singh, D., Qi, R., Jordan, J. L., Mateo, L. S. & Kao, C. C. The human antimicrobial peptide LL-37, however not the mouse ortholog, mCRAMP, can stimulate signaling by poly(I:C) by means of a FPRL1-dependent pathway. J. Biol. Chem. 288, 8258–8268 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hu, Z. et al. Antimicrobial cathelicidin peptide LL-37 inhibits the pyroptosis of macrophages and improves the survival of polybacterial septic mice. Int. Immunol. 28, 245–253 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wei, X. et al. A novel cecropin-LL37 hybrid peptide protects mice towards EHEC infection-mediated adjustments in intestine microbiota, intestinal irritation, and impairment of mucosal barrier capabilities. Entrance. Immunol. 11, 1361 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Mandal, S. M., Silva, O. N. & Franco, O. L. Recombinant probiotics with antimicrobial peptides: A twin technique to enhance immune response in immunocompromised sufferers. Drug Discov. Right this moment 19, 1045–1050 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • De Azevedo, M. et al. In vitro and in vivo characterization of DNA supply utilizing recombinant Lactococcus lactis expressing a mutated type of L. monocytogenes internalin A. BMC Microbiol. 12, 299 (2012).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Lilly, D. M. & Stillwell, R. H. Probiotics: Progress-promoting components produced by microorganisms. Science 147, 747–748 (1965).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Carvalho, R. D. D. O. et al. Use of untamed kind or recombinant lactic acid micro organism instead remedy for gastrointestinal inflammatory ailments: A give attention to inflammatory bowel ailments and mucositis. Entrance. Microbiol. 8, 800 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Tavares, L. M. et al. Novel methods for environment friendly manufacturing and supply of stay biotherapeutics and biotechnological makes use of of Lactococcus lactis: The lactic acid bacterium mannequin. Entrance. Bioeng. Biotechnol. 8, 517166 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bermúdez-Humarán, L. G. et al. Results of intranasal administration of a leptin-secreting Lactococcus lactis recombinant on meals consumption, physique weight, and immune response of mice. Appl. Environ. Microbiol. 73, 5300–5307 (2007).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Bermúdez-Humarán, L. G. et al. Engineering lactococci and lactobacilli for human well being. Curr. Opin. Microbiol. 16, 278–283 (2013).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Guimarâes, V. D. et al. Use of native lactococci as autos for supply of DNA into mammalian epithelial cells. Appl. Environ. Microbiol. 72, 7091–7097 (2006).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • de Azevedo, M. et al. Recombinant invasive Lactococcus lactis can switch DNA vaccines both on to dendritic cells or throughout an epithelial cell monolayer. Vaccine 33, 4807–4812 (2015).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Mancha-Agresti, P. et al. Recombinant invasive Lactococcus lactis carrying a DNA vaccine coding the Ag85A antigen will increase INF-γ, IL-6, and TNF-α cytokines after intranasal immunization. Entrance. Microbiol. 8, 1263 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Chatel, J. M. et al. In vivo switch of plasmid from food-grade transiting lactococci to murine epithelial cells. Gene Ther. 15, 1184–1190 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wong, C. C. M. et al. Protecting results of cathelicidin-encoding Lactococcus lactis in murine ulcerative colitis. J. Gastroenterol. Hepatol. 27, 1205–1212 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Li, J. et al. Recombinant CRAMP-producing Lactococcus lactis attenuates dextran sulfate sodium-induced colitis by colonic colonization and inhibiting p38/NF-κB signaling. Meals Nutr. Res. 65, 1–11 (2021).

    Google Scholar 

  • Eichele, D. D. & Kharbanda, Ok. Ok. Dextran sodium sulfate colitis murine mannequin: An indispensable instrument for advancing our understanding of inflammatory bowel ailments pathogenesis. World J. Gastroenterol. 23, 6016–6029 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Morampudi, V. et al. DNBS/TNBS colitis fashions: offering insights into inflammatory bowel illness and results of dietary fats. J. Vis. Exp. 84, e51297. https://doi.org/10.3791/51297 (2014).

    CAS 
    Article 

    Google Scholar 

  • Breyner, N. M. et al. Oral supply of pancreatitis-associated protein by Lactococcus lactis shows protecting results in dinitro-benzenesulfonic-acid-induced colitis mannequin and is ready to modulate the composition of the microbiota. Environ. Microbiol. 21, 4020 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Liu, M. et al. Protecting results of a novel probiotic pressure, Lactococcus lactis ML2018, in colitis: in vivo and in vitro proof. Meals Funct. 10, 1132–1145 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Luerce, T. D. et al. Anti-inflammatory results of Lactococcus lactis NCDO 2118 throughout the remission interval of chemically induced colitis. Intestine Pathog. 6, 33 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Nishitani, Y. et al. Lactococcus lactis subsp. cremoris FC alleviates signs of colitis induced by dextran sulfate sodium in mice. Int. Immunopharmacol. 9, 1444–1451 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Carvalho, R. D. et al. Secretion of biologically lively pancreatitis-associated protein I (PAP) by genetically modified dairy Lactococcus lactis NZ9000 within the prevention of intestinal mucositis. Microb. Cell Truth. 16, 27 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Rodrigues, V. F. et al. Acute an infection with Strongyloides venezuelensis will increase gut manufacturing IL-10, reduces Th1/Th2/Th17 induction in colon and attenuates dextran sulfate sodium-induced colitis in BALB/c mice. Cytokine 111, 72–83 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ip, W. Ok. E., Hoshi, N., Shouval, D. S., Snapper, S. & Medzhitov, R. Anti-inflammatory impact of IL-10 mediated by metabolic reprogramming of macrophages. Science 356, 513–519 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Krawiec, P. & Pac-Kożuchowska, E. Serum interleukin 17A and interleukin 17F in kids with inflammatory bowel illness. Sci. Rep. 10, 12617 (2020).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Canavan, T. N., Elmets, C. A., Cantrell, W. L., Evans, J. M. & Elewski, B. E. Anti-IL-17 drugs used within the remedy of plaque psoriasis and psoriatic arthritis: A complete evaluation. Am. J. Clin. Dermatol. 17, 33–47 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Wang, J. et al. Speedy onset of inflammatory bowel illness after receiving secukinumab infusion. ACG Case Rep. J. 5, e56 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Targan, S. R. et al. A randomized, double-blind, placebo-controlled section 2 examine of brodalumab in sufferers with moderate-to-severe Crohn’s illness. Am. J. Gastroenterol. 111, 1599–1607 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hueber, W. et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for reasonable to extreme Crohn’s illness: Surprising outcomes of a randomised, double-blindplacebo- managed trial. Intestine 61, 1693–1700 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ogawa, A., Andoh, A., Araki, Y., Bamba, T. & Fujiyama, Y. Neutralization of interleukin-17 aggravates dextran sulfate sodium-induced colitis in mice. Clin. Immunol. 110, 55–62 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Whibley, N. & Gaffen, S. L. Intestine-busters: IL-17 ain’t afraid of no IL-23. Immunity 43, 620–622 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Park, C. H., Lee, A., Ahn, S. B., Eun, C. S. & Han, D. S. Position of innate lymphoid cells in power colitis throughout anti-IL-17A remedy. Sci. Rep. 10, 1–11 (2020).

    CAS 
    Article 

    Google Scholar 

  • Tachibana, M. et al. Ablation of IL-17A results in extreme colitis in IL-10-deficient mice: Implications of myeloid-derived suppressor cells and NO manufacturing. Int. Immunol. 32, 187–201 (2019).

    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Minns, D. et al. The neutrophil antimicrobial peptide cathelicidin promotes Th17 differentiation. Nat. Commun. 12, 1–16 (2021).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Miyoshi, A. et al. Managed manufacturing of steady heterologous proteins in Lactococcus lactis. Appl. Environ. Microbiol. 68, 3141–3146 (2002).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Meynier, M. et al. AhR/IL-22 pathway as new goal for the remedy of post-infectious irritable bowel syndrome signs. Intestine Microbes 14, 2022997 (2022).

    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Cooper, H. S., Murthy, S. N. S., Shah, R. S. & Sedergran, D. J. Clinicopathologic examine of dextran sulfate sodium experimental murine colitis. Lab. Investig. 69, 238–250 (1993).

    CAS 
    PubMed 

    Google Scholar 

  • Wrzosek, L. et al. Transplantation of human microbiota into standard mice durably reshapes the intestine microbiota. OPEN 8, 6854 (2018).

    Google Scholar 

  • Jl, W., Wk, M., Gp, M. & Pl, B. Inhibition of leukotriene synthesis markedly accelerates therapeutic in a rat mannequin of inflammatory bowel illness. Gastroenterology 96, 29–36 (1989).

    Article 

    Google Scholar 

  • Godon, J. J., Zumstein, E., Dabert, P., Habouzit, F. & Moletta, R. Molecular microbial variety of an anaerobic digestor as decided by small-subunit rDNA sequence evaluation. Appl. Environ. Microbiol. 63, 2802–2813 (1997).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Afgan, E. et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 replace. Nucleic Acids Res. 46, W537–W544 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Escudié, F. et al. FROGS: Discover, quickly, OTUs with galaxy answer. Bioinformatics 34, 1287–1294 (2018).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Facebook
    Twitter
    Pinterest
    WhatsApp
    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments