Monday, September 26, 2022
HomeMicrobiologyIL-23 signaling prevents ferroptosis-driven renal immunopathology throughout candidiasis

IL-23 signaling prevents ferroptosis-driven renal immunopathology throughout candidiasis

Facebook
Twitter
Pinterest
WhatsApp

  • Netea, M. G., Joosten, L. A., van der Meer, J. W., Kullberg, B. J. & van de Veerdonk, F. L. Immune defence in opposition to Candida fungal infections. Nat. Rev. Immunol. 15, 630–642 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lionakis, M. S., Iliev, I. D. & Hohl, T. M. Immunity in opposition to fungi. JCI Perception 2, 93156 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Jawale, C. V. & Biswas, P. S. Native antifungal immunity within the kidney in disseminated candidiasis. Curr. Opin. Microbiol. 62, 1–7 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Brown, G. D. Innate antifungal immunity: the important thing function of phagocytes. Annu Rev. Immunol. 29, 1–21 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Dambuza, I. M., Levitz, S. M., Netea, M. G. & Brown, G. D. Fungal recognition and host protection mechanisms. Microbiol. Spectr. 5, 0050–2016 (2017).

    Article 

    Google Scholar 

  • Branzk, N. et al. Neutrophils sense microbe dimension and selectively launch neutrophil extracellular traps in response to massive pathogens. Nat. Immunol. 15, 1017–1025 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Drummond, R. A. et al. CARD9-dependent neutrophil recruitment protects in opposition to fungal invasion of the central nervous system. PLoS Pathog. 11, e1005293 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Whitney, P. G. et al. Syk signaling in dendritic cells orchestrates innate resistance to systemic fungal an infection. PLoS Pathog. 10, e1004276 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Jawale, C. V. et al. Restoring glucose uptake rescues neutrophil dysfunction and protects in opposition to systemic fungal an infection in mouse fashions of kidney illness. Sci. Transl. Med. 12, eaay5691 (2020).

  • Swidergall, M. & Filler, S. G. Oropharyngeal candidiasis: fungal invasion and epithelial cell responses. PLoS Pathog. 13, e1006056 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Benedict, Ok., Jackson, B. R., Chiller, T. & Beer, Ok. D. Estimation of direct healthcare prices of fungal ailments in the US. Clin. Infect. Dis. 68, 1791–1797 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Tsay, S. et al. 363. Nationwide burden of candidemia, United States, 2017. Open Discussion board Infect. Dis. 5, S142–S143 (2018).

    PubMed Central 
    Article 

    Google Scholar 

  • Conti, H. R. et al. Th17 cells and IL-17 receptor signaling are important for mucosal host protection in opposition to oral candidiasis. J. Exp. Med. 206, 299–311 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Conti, H. R. et al. IL-17 receptor signaling in oral epithelial cells is vital for cover in opposition to oropharyngeal candidiasis. Cell Host Microbe 20, 606–617 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Verma, A., Gaffen, S. L. & Swidergall, M. Innate immunity to mucosal candida infections. J. Fungi 3, 60 (2017).

    Article 
    CAS 

    Google Scholar 

  • Puel, A. et al. Inborn errors of human IL-17 immunity underlie power mucocutaneous candidiasis. Curr. Opin. Allergy Clin. Immunol. 12, 616–622 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Swidergall, M. & LeibundGut-Landmann, S. Immunosurveillance of Candida albicans commensalism by the adaptive immune system. Mucosal Immunol. 15, 829–836 (2022).

  • Lionakis, M. S. & Levitz, S. M. Host management of fungal infections: classes from primary research and human cohorts. Annu. Rev. Immunol. 36, 157–191 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lionakis, M. S., Netea, M. G. & Holland, S. M. Mendelian genetics of human susceptibility to fungal an infection. Chilly Spring Harb. Perspect. Med. 4, a019638 (2014).

  • Swidergall, M. et al. Candidalysin is required for neutrophil recruitment and virulence throughout systemic Candida albicans an infection. J. Infect. Dis. 220, 1477–1488 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Carpino, N., Naseem, S., Frank, D. M. & Konopka, J. B. Modulating host signaling pathways to advertise resistance to an infection by Candida albicans. Entrance. Cell. Infect. Microbiol. 7, 481 (2017).

  • Lionakis, M. S. et al. Chemokine receptor Ccr1 drives neutrophil-mediated kidney immunopathology and mortality in invasive candidiasis. PLoS Pathog. 8, e1002865 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Pappas, P. G., Lionakis, M. S., Arendrup, M. C., Ostrosky-Zeichner, L. & Kullberg, B. J. Invasive candidiasis. Nat. Rev. Dis. Prim. 4, 18026 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Legrand, F. et al. Adjuvant corticosteroid remedy for power disseminated candidiasis. Clin. Infect. Dis. 46, 696–702 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Tomashefski, J. F. Jr. & Abramowsky, C. R. Candida-associated renal papillary necrosis. Am. J. Clin. Pathol. 75, 190–194 (1981).

    PubMed 
    Article 

    Google Scholar 

  • Lone, S. A., Wani, M. Y., Fru, P. & Ahmad, A. Mobile apoptosis and necrosis as therapeutic targets for novel Eugenol Tosylate Congeners in opposition to Candida albicans. Sci. Rep. 10, 1191 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bertheloot, D., Latz, E. & Franklin, B. S. Necroptosis, pyroptosis and apoptosis: an intricate sport of cell demise. Cell. Mol. Immunol. 18, 1106–1121 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Jorgensen, I., Rayamajhi, M. & Miao, E. A. Programmed cell demise as a defence in opposition to an infection. Nat. Rev. Immunol. 17, 151–164 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Linkermann, A. et al. Regulated cell demise in AKI. J. Am. Soc. Nephrol. 25, 2689–2701 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Tang, D., Kang, R., Berghe, T. V., Vandenabeele, P. & Kroemer, G. The molecular equipment of regulated cell demise. Cell Res. 29, 347–364 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kim, E. H., Wong, S. W. & Martinez, J. Programmed necrosis and illness: we interrupt your common programming to carry you necroinflammation. Cell Dying Differ. 26, 25–40 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Dhuriya, Y. Ok. & Sharma, D. Necroptosis: a regulated inflammatory mode of cell demise. J. Neuroinflammation 15, 199 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Chen, X., Kang, R., Kroemer, G. & Tang, D. Ferroptosis in an infection, irritation, and immunity. J. Exp. Med. 218, e20210518 (2021).

  • Miao, E. A. et al. Caspase-1-induced pyroptosis is an innate immune effector mechanism in opposition to intracellular micro organism. Nat. Immunol. 11, 1136–1142 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wellington, M., Koselny, Ok., Sutterwala, F. S. & Krysan, D. J. Candida albicans triggers NLRP3-mediated pyroptosis in macrophages. Eukaryot. Cell 13, 329–340 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Li, T. et al. TSC1 suppresses macrophage necroptosis for the management of an infection by fungal pathogen Candida albicans. ImmunoHorizons 5, 90–101 (2021).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Gross, O. et al. Syk kinase signalling {couples} to the Nlrp3 inflammasome for anti-fungal host defence. Nature 459, 433–436 (2009).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Nur, S. et al. IL-23 helps host protection in opposition to systemic Candida albicans an infection by making certain myeloid cell survival. PLoS Pathog. 15, e1008115 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Swidergall, M., Solis, N. V., Lionakis, M. S. & Filler, S. G. EphA2 is an epithelial cell sample recognition receptor for fungal beta-glucans. Nat. Microbiol. 3, 53–61 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Swidergall, M. et al. EphA2 is a neutrophil receptor for candida albicans that stimulates antifungal exercise throughout oropharyngeal an infection. Cell Rep. 28, 423–433 e5 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Solar, W. et al. Innovative: EPHB2 is a coreceptor for fungal recognition and phosphorylation of Syk within the Dectin-1 signaling pathway. J. Immunol. 206, 1419–1423 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chen, J. et al. TAGAP instructs Th17 differentiation by bridging Dectin activation to EPHB2 signaling in innate antifungal response. Nat. Commun. 11, 1913 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Aaron, P. A., Jamklang, M., Uhrig, J. P. & Gelli, A. The blood-brain barrier internalises Cryptococcus neoformans through the EphA2-tyrosine kinase receptor. Cell. Microbiol. https://doi.org/10.1111/cmi.12811 (2018).

  • Kottom, T. J., Schaefbauer, Ok., Carmona, E. M. & Limper, A. H. EphA2 is a lung epithelial cell receptor for pneumocystis β-glucans. J. Infect. Dis. 225, 525–530 (2021).

  • Swidergall, M. Candida albicans at host barrier websites: sample recognition receptors and past. Pathogens 8, 40 (2019).

    CAS 
    PubMed Central 
    Article 

    Google Scholar 

  • Swidergall, M. et al. Activation of EphA2-EGFR signaling in oral epithelial cells by Candida albicans virulence elements. PLoS Pathog. 17, e1009221 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Phan, Q. T. et al. The globular C1q receptor is required for epidermal progress issue receptor signaling throughout Candida albicans an infection. mBio 12, e0271621 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Höft, M. A., Hoving, J. C. & Brown, G. D. Signaling C-type lectin receptors in antifungal immunity. Curr. Prime. Microbiol. Immunol. 429, 63–101 (2020).

    PubMed 

    Google Scholar 

  • Brown, G. D. & Gordon, S. Immune recognition. a brand new receptor for beta-glucans. Nature 413, 36–37 (2001).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Brown, G. D. Dectin-1: a signalling non-TLR pattern-recognition receptor. Nat. Rev. Immunol. 6, 33–43 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • de Saint-Vis, B. et al. Human dendritic cells categorical neuronal Eph receptor tyrosine kinases: function of EphA2 in regulating adhesion to fibronectin. Blood 102, 4431–4440 (2003).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Finney, A. C. et al. EphA2 expression regulates irritation and fibroproliferative reworking in atherosclerosis. Circulation 136, 566–582 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Navarathna, D. H., Roberts, D. D., Munasinghe, J. & Lizak, M. J. Imaging candida infections within the host. Strategies Mol. Biol. 1356, 69–78 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Dunker, C. et al. Speedy proliferation because of higher metabolic adaptation leads to full virulence of a filament-deficient Candida albicans pressure. Nat. Commun. 12, 3899 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lionakis, M. S., Lim, J. Ok., Lee, C. C. & Murphy, P. M. Organ-specific innate immune responses in a mouse mannequin of invasive candidiasis. J. Innate Immun. 3, 180–199 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Norice, C. T., Smith, F. J. Jr., Solis, N., Filler, S. G. & Mitchell, A. P. Requirement for Candida albicans Sun41 in biofilm formation and virulence. Eukaryot. Cell 6, 2046–2055 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Liu, Y., Mittal, R., Solis, N. V., Prasadarao, N. V. & Filler, S. G. Mechanisms of Candida albicans trafficking to the mind. PLoS Pathog. 7, e1002305 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Carvalho, A. et al. Immunity and tolerance to fungi in hematopoietic transplantation: ideas and views. Entrance. Immunol. 3, 156 (2012).

  • Leavy, O. Macrophages: early antifungal defence in kidneys. Nat. Rev. Immunol. 14, 6–7 (2014).

    PubMed 

    Google Scholar 

  • Jae-Chen, S. et al. Mechanism underlying renal failure attributable to pathogenic Candida albicans an infection. Biomed. Rep. 3, 179–182 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Spellberg, B., Ibrahim, A. S., Edwards, J. E. Jr. & Filler, S. G. Mice with disseminated candidiasis die of progressive sepsis. J. Infect. Dis. 192, 336–343 (2005).

    PubMed 
    Article 

    Google Scholar 

  • Singer, E. et al. Neutrophil gelatinase-associated lipocalin: pathophysiology and scientific functions. Acta Physiol. 207, 663–672 (2013).

    CAS 
    Article 

    Google Scholar 

  • Duggan, S., Leonhardt, I., Hunniger, Ok. & Kurzai, O. Host response to Candida albicans bloodstream an infection and sepsis. Virulence 6, 316–326 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Su, L., Liu, D., Chai, W., Liu, D. & Lengthy, Y. Position of sTREM-1 in predicting mortality of an infection: a scientific evaluation and meta-analysis. BMJ Open 6, e010314 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Jang, H. R. & Rabb, H. Immune cells in experimental acute kidney harm. Nat. Rev. Nephrol. 11, 88–101 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dimitrova, P., Gyurkovska, V., Shalova, I., Saso, L. & Ivanovska, N. Inhibition of zymosan-induced kidney dysfunction by tyrphostin AG-490. J. Inflamm. 6, 13–13 (2009).

    Article 
    CAS 

    Google Scholar 

  • Khounlotham, M., Subbian, S., Smith, R. third, Cirillo, S. L. & Cirillo, J. D. Mycobacterium tuberculosis interferes with the response to an infection by inducing the host EphA2 receptor. J. Infect. Dis. 199, 1797–1806 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zhang, Y. et al. mTORC1 {couples} cyst(e)ine availability with GPX4 protein synthesis and ferroptosis regulation. Nat. Commun. 12, 1589 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Dixon, S. J. & Stockwell, B. R. The hallmarks of ferroptosis. Annu. Rev. Most cancers Biol. 3, 35–54 (2019).

    Article 

    Google Scholar 

  • Yang, W. S. & Stockwell, B. R. Ferroptosis: demise by lipid peroxidation. Developments Cell Biol. 26, 165–176 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dixon, S. J. et al. Ferroptosis: an iron-dependent type of nonapoptotic cell demise. Cell 149, 1060–1072 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Horwath, M. C. et al. Antifungal exercise of the lipophilic antioxidant ferrostatin-1. Chembiochem 18, 2069–2078 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cao, Q. et al. CD103+ dendritic cells elicit CD8+ T cell responses to speed up kidney harm in adriamycin nephropathy. J. Am. Soc. Nephrol. 27, 1344–1360 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Arnold, I. C. et al. CD11c(+) monocyte/macrophages promote power Helicobacter hepaticus-induced intestinal irritation via the manufacturing of IL-23. Mucosal Immunol. 9, 352–363 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Guo, Y. et al. Throughout aspergillus an infection, monocyte-derived DCs, neutrophils, and plasmacytoid DCs improve innate immune protection via CXCR3-dependent crosstalk. Cell Host Microbe 28, 104.e4–116.e4 (2020).

    Article 
    CAS 

    Google Scholar 

  • Van Prooyen, N., Henderson, C. A., Hocking Murray, D. & Sil, A. CD103+ standard dendritic cells are vital for TLR7/9-dependent host protection in opposition to Histoplasma capsulatum, an endemic fungal pathogen of people. PLoS Pathog. 12, e1005749 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Zelante, T. et al. CD103+ dendritic cells management Th17 cell perform within the lung. Cell Rep. 12, 1789–1801 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Liu, Q. & Wang, Ok. The induction of ferroptosis by impairing STAT3/Nrf2/GPx4 signaling enhances the sensitivity of osteosarcoma cells to cisplatin. Cell Biol. Int. 43, 1245–1256 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Brown, C. W., Amante, J. J., Goel, H. L. & Mercurio, A. M. The α6β4 integrin promotes resistance to ferroptosis. J. Cell Biol. 216, 4287–4297 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Li, H. et al. IL-23 reshapes kidney resident cell metabolism and promotes native kidney irritation. J. Clin. Investig. 131, e142428 (2021).

  • Awasthi, A. et al. Innovative: IL-23 receptor GFP reporter mice reveal distinct populations of IL-17-producing cells. J. Immunol. 182, 5904–5908 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gaffen, S. L., Jain, R., Garg, A. V. & Cua, D. J. The IL-23-IL-17 immune axis: from mechanisms to therapeutic testing. Nat. Rev. Immunol. 14, 585–600 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Legrand, A. J., Konstantinou, M., Goode, E. F. & Meier, P. The diversification of cell demise and immunity: memento mori. Mol. Cell 76, 232–242 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Li, J. et al. Ferroptosis: previous, current and future. Cell Dying Dis. 11, 88 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Tang, D., Chen, X., Kang, R. & Kroemer, G. Ferroptosis: molecular mechanisms and well being implications. Cell Res. 31, 107–125 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Medzhitov, R., Schneider, D. S. & Soares, M. P. Illness tolerance as a protection technique. Science 335, 936–941 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kapralov, A. A. et al. Redox lipid reprogramming instructions susceptibility of macrophages and microglia to ferroptotic demise. Nat. Chem. Biol. 16, 278–290 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Solar, T. & Chi, J. T. Regulation of ferroptosis in most cancers cells by YAP/TAZ and Hippo pathways: The therapeutic implications. Genes Dis. 8, 241–249 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Jaumouillé, V. & Waterman, C. M. Bodily constraints and forces concerned in phagocytosis. Entrance. Immunol. 11, 1097–1097 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Bain, J. M. et al. Immune cells fold and injury fungal hyphae. Proc. Natl Acad. Sci. USA 118, e2020484118 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Cheng, S.-C. et al. mTOR- and HIF-1α-mediated cardio glycolysis as metabolic foundation for educated immunity. Science 345, 1250684 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Vucetic, M., Daher, B., Cassim, S., Meira, W. & Pouyssegur, J. Collectively we stand, aside we fall: how cell-to-cell contact/interaction supplies resistance to ferroptosis. Cell Dying Dis. 11, 789 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Pera, A. et al. Dexamethasone remedy and candida sepsis in neonates lower than 1250 grams. J. Perinatol. 22, 204–208 (2002).

    PubMed 
    Article 

    Google Scholar 

  • von Mässenhausen, A. et al. Dexamethasone sensitizes to ferroptosis by glucocorticoid receptor-induced dipeptidase-1 expression and glutathione depletion. Sci. Adv. 8, eabl8920 (2022).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Doll, S. & Conrad, M. Iron and ferroptosis: a nonetheless ill-defined liaison. IUBMB Life 69, 423–434 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gaschler, M. M. & Stockwell, B. R. Lipid peroxidation in cell demise. Biochem. Biophys. Res. Commun. 482, 419–425 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Harry, R. S. et al. Metabolic influence of 4-hydroxynonenal on macrophage-like RAW 264.7 perform and activation. Chem. Res. Toxicol. 25, 1643–1651 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Strasser, D. et al. Syk kinase-coupled C-type lectin receptors interact protein kinase C-δ to elicit Card9 adaptor-mediated innate immunity. Immunity 36, 32–42 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wiernicki, B. et al. Most cancers cells dying from ferroptosis impede dendritic cell-mediated anti-tumor immunity. Nat. Commun. 13, 3676 (2022).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Khader, S. A. & Thirunavukkarasu, S. The story of IL-12 and IL-23: a paradigm shift. J. Immunol. 202, 629–630 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Thompson, A. & Orr, S. J. Rising IL-12 household cytokines within the battle in opposition to fungal infections. Cytokine 111, 398–407 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kim, H. S. et al. Curdlan prompts dendritic cells via dectin-1 and toll-like receptor 4 signaling. Int. Immunopharmacol. 39, 71–78 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Parham, C. et al. A receptor for the heterodimeric cytokine IL-23 consists of IL-12Rbeta1 and a novel cytokine receptor subunit, IL-23R. J. Immunol. 168, 5699–5708 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Oppmann, B. et al. Novel p19 protein engages IL-12p40 to kind a cytokine, IL-23, with organic actions related in addition to distinct from IL-12. Immunity 13, 715–725 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chen, Y. et al. A research on the chance of fungal an infection with tofacitinib (CP-690550), a novel oral agent for rheumatoid arthritis. Sci. Rep. 7, 6779 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Tsirigotis, P. et al. Remedy of experimental candida sepsis with a janus kinase inhibitor controls irritation and prolongs survival. Antimicrob. Brokers Chemother. 59, 7367–7373 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Yang, X. O. et al. STAT3 regulates cytokine-mediated technology of inflammatory helper T cells. J. Biol. Chem. 282, 9358–9363 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lee, P. W. et al. IL-23R-activated STAT3/STAT4 is crucial for Th1/Th17-mediated CNS autoimmunity. JCI Perception 2, e91663 (2017).

    PubMed Central 
    Article 

    Google Scholar 

  • Kang, R. et al. Lipid peroxidation drives gasdermin D-mediated pyroptosis in deadly polymicrobial sepsis. Cell Host Microbe 24, 97.e4–108.e4 (2018).

    Article 
    CAS 

    Google Scholar 

  • Yao, R. et al. Pathogenic results of inhibition of mTORC1/STAT3 axis facilitates Staphylococcus aureus-induced pyroptosis in human macrophages. Cell Commun. Sign. 18, 187 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Smith, A. D. et al. Autocrine IL6-mediated activation of the STAT3-DNMT axis silences the TNFα-RIP1 necroptosis pathway to maintain survival and accumulation of myeloid-derived suppressor cells. Most cancers Res. 80, 3145–3156 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wang, W. et al. CD8+ T cells regulate tumour ferroptosis throughout most cancers immunotherapy. Nature 569, 270–274 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Dennehy, Ok. M., Willment, J. A., Williams, D. L. & Brown, G. D. Reciprocal regulation of IL-23 and IL-12 following co-activation of Dectin-1 and TLR signaling pathways. Eur. J. Immunol. 39, 1379–1386 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wang, H. et al. Focusing on EphA2 suppresses hepatocellular carcinoma initiation and development by twin inhibition of JAK1/STAT3 and AKT signaling. Cell Rep. 34, 108765 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Melillo, J. A. et al. Dendritic cell (DC)-specific focusing on reveals Stat3 as a detrimental regulator of DC perform. J. Immunol. 184, 2638–2645 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lionakis, M. S. et al. CX3CR1-dependent renal macrophage survival promotes Candida management and host survival. J. Clin. Investig. 123, 5035–5051 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Millet, N., Solis, N. V. & Swidergall, M. Mucosal IgA prevents commensal Candida albicans dysbiosis within the oral cavity. Entrance. Immunol. 11, 555363 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Facebook
    Twitter
    Pinterest
    WhatsApp
    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments