Wednesday, September 28, 2022
HomeChemistryGrowth of a brand new and facile methodology for dedication of chlorpyrifos...

Growth of a brand new and facile methodology for dedication of chlorpyrifos residues in inexperienced tea by dispersive liquid–liquid microextraction

Facebook
Twitter
Pinterest
WhatsApp

  • Karak, T. & Bhagat, R. M. Hint components in tea leaves, made tea and tea infusion: A assessment. Meals Res. Int. 43(9), 2234–2252 (2010).

    CAS 
    Article 

    Google Scholar 

  • Lu, C. et al. Simultaneous dedication of pyrethrins residues in teas by ultra-performance liquid chromatog-raphy/tandem mass spectrometry. Anal. Chim. Acta 678(1), 56–62 (2010).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Merhi, A., Taleb, R., Elaridi, J. & Hassan, H. F. Analytical strategies used to find out pesticide residues in tea: A scientific assessment. Appl. Meals Res. 2, 1–10 (2022).

    Article 
    CAS 

    Google Scholar 

  • Yali, S. et al. Complete investigation on non-volatile and risky metabolites in 4 varieties of inexperienced teas obtained from the identical tea cultivar of Longjing 43 (Camellia sinensis var. sinensis) utilizing the broadly focused metabolomics. Meals Chem. 394, 133501 (2022).

    Article 
    CAS 

    Google Scholar 

  • Han, Z. X. et al. Inexperienced tea flavour determinants and their modifications over manufacturing processes. Meals Chem. 212, 739–748 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Tan, H. et al. Characterisation of key odourants in Japanese inexperienced tea utilizing fuel chromatography-olfactometry and fuel chromatography-mass spectrometry. LWT Meals Sci. Technol. 108, 221–232 (2019).

    CAS 
    Article 

    Google Scholar 

  • Jankun, J., Selman, S. H., Swiercz, R. & Skrzypczak-Jankun, E. Why ingesting inexperienced tea might stop most cancers. Nature 387(6633), 561–561 (1997).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sinija, V. R. & Mishra, H. N. Inexperienced tea: Well being advantages. J. Nutr. Environ. Med. 17(4), 232–242 (2008).

    CAS 
    Article 

    Google Scholar 

  • Zhang, Z. et al. Potential protecting mechanisms of inexperienced tea polyphenol EGCG towards COVID-19. Developments Meals Sci. Technol. 114, 11–24 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Abbaspour, M., Farajzadeh, M. A., Sorouraddin, S. M. & Mohebbi, A. Monitoring of 9 pesticides in several cereal flour samples with excessive efficiency liquid chromatography-diode array detection. Anal. Strategies https://doi.org/10.1039/C9AY00935C (2019).

    Article 

    Google Scholar 

  • Zhu, X. Y. et al. Speedy detection of chlorpyrifos pesticide residue in tea utilizing surface-enhanced Raman spectroscopy mixed with chemometrics. Spectrochim. Acta A https://doi.org/10.1016/j.saa.2020.119366(2021) (2020).

    Article 

    Google Scholar 

  • Berenstein, G. Montserrat, human and soil publicity throughout mechanical chlorpyrifos, myclobutanil and copper oxychloride utility in a peach orchard in argentina. Sci. Complete Environ. 586, 1254–1262 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Liu, Y. et al. A easy AuNPs-based colorimetric aptasensor for chlorpyrifos detection. Chin. Chem. Lett. https://doi.org/10.1016/j.cclet.2021.11.025 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sang, C. H. et al. Persistent well being danger comparability between China and Denmark on dietary publicity to chlorpyrifos. Environ. Pollut. 257, 113590 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Quatrin, G. D. et al. New analytical methodology for chlorpyrifos dedication in biobeds constructed in Brazil: Growth and validation. J. Chromatogr. B 1157, 122285 (2020).

    CAS 
    Article 

    Google Scholar 

  • Zhu, J. J. et al. Qualitative and quantitative evaluation of chlorpyrifos residues in tea by surface-enhanced Raman spectroscopy (SERS) mixed with chemometric fashions. LWT Meals Sci. Technol. 97, 760–769 (2018).

    CAS 
    Article 

    Google Scholar 

  • Han, Y. et al. Simultaneous dedication of 124 pesticide residues in chinese language liquor and liquor-making uncooked supplies (sorghum and rice hull) by speedy multi-plug filtration cleanup and fuel chromatography-tandem mass spectrometry. Meals Chem. 241, 258–267 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Li, J. W. et al. Age- and diet-specific results of persistent publicity to chlorpyrifos on hormones, irritation and intestine microbiota in rats. Pestic. Biochem. Physiol. 159, 68 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Nieto, M. R. R. et al. Persistent publicity to low concentrations of chlorpyrifos impacts regular cyclicity and histology of the uterus in feminine rats. Meals Chem. Toxicol. 156, 112515 (2021).

    Article 
    CAS 

    Google Scholar 

  • Kharkongor, M., Hooroo, R. N. Ok. & Dey, S. Results of the insecticide chlorpyrifos, on hatching, mortality and morphology of Duttaphrynus melanostictus embryos. Chemosphere 210, 917 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chiu, Ok. C. et al. Prenatal chlorpyrifos publicity in affiliation with PPARγ H3K4me3 and DNA methylation ranges and baby growth. Environ. Psychological Pollut. 274, 116511 (2021).

    CAS 
    Article 

    Google Scholar 

  • Muehlwald, S., Buchner, N. & Kroh, L. W. Investigating the causes of low detectability of pesticides in fruit and veggies analysed by excessive -performance liquid chromatography-time-of-flight. J. Chromatogr. A. 1542, 37–49 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Jiao, W. T. et al. Optimized mixture of dilution and refined QuEChERS to beat matrix results of six varieties of tea for dedication eight neonicotinoid pesticides by ultra-performance liquid chromatography: Electrospray tandem mass spectrometry. Meals Chem. 210, 26–34 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Thräne, C., Isemer, C. & Engelhardt, U. H. Dedication of nicotine in tea (camellia sinensis) by LC–ESI–MS/MS utilizing a modified QuEChERS methodology. Eur. Meals Res. Technol. 241, 227–232 (2015).

    Article 
    CAS 

    Google Scholar 

  • Wu, C. C. Multiresidue methodology for the dedication of pesticides in Oolong tea utilizing QuEChERS by fuel chromatography – triple quadrupole tandem mass spectrometry. Meals Chem. 229, 580–587 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Tripathy, V., Saha, A. & Kumar, J. Detection of pesticides in well-liked medicinal herbs: a modified QuEChERS and fuel chromatography–mass spectrometrybased strategy. J. Meals Sci. Technol. 54, 458–468 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Nemati, M. et al. Growth of a fuel–managed deep eutectic solvent-based evaporation–assisted dispersive liquid–liquid microextraction strategy for the extraction of pyrethroid pesticides from fruit juices. Microchem. J. 175, 107196 (2022).

    CAS 
    Article 

    Google Scholar 

  • Yang, X. et al. Multiresidue methodology for dedication of 88 pesticides in berry fruits utilizing strong–part extraction and fuel chromatography–mass spectrometry: Dedication of 88 pesticides in berries utilizing SPE and GC–MS. Meals Chem. 127, 855–865 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • De Pinho, G. P., Neves, A. A., de Queiroz, M. E. L. & Silverio, F. O. Optimization of the liquid–liquid extraction methodology and low temperature purification (LLE–LTP) for pesticide residue evaluation in honey samples by fuel chromatography. Meals Management 21(10), 1307–1311 (2010).

    Article 
    CAS 

    Google Scholar 

  • Mohebbi, A., Farajzadeh, M. A., Yaripour, S. & Afshar Mogaddam, M. R. Dedication of tricyclic antidepressants in human urine samples by the three–step pattern pretreatment adopted by HPLC–UV evaluation: An environment friendly analytical methodology for additional pharmacokinetic and forensic research. EXCLI J. 17, 952–963 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, X. S. et al. Synthesis and functions of functionalized magnetic supplies in pattern preparation. Developments Anal. Chem. 45, 233–247 (2013).

    CAS 
    Article 

    Google Scholar 

  • Berijani, S. et al. Dispersive liquid–liquid microextraction mixed with fuel chromatography-flame photometric detection Quite simple, speedy and delicate methodology for the dedication of organophosphorus pesticides in water. J. Chromatogr. A 1123, 1 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Rezaee, M. Y. et al. Dedication of natural compounds in water utilizing dispersive liquid–liquid microextraction. J. Chromatogr. A 1116(1), 1–9 (2006).

    MathSciNet 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Rykowska, I., Ziemblinska, J. & Nowak, I. Trendy approaches in dispersive liquid-liquid microextraction (DLLME) based mostly on ionic liquids: A assessment. J. Mol. Liq. 259, 319 (2018).

    CAS 
    Article 

    Google Scholar 

  • Jovanov, P. et al. Growth of multiresidue DLLME and QuEChERS based mostly LC-MS/MS methodology for dedication of chosen neonicotinoid pesticides in honey liqueur. Meals Res. Int. 55, 11 (2014).

    CAS 
    Article 

    Google Scholar 

  • Bravo, M. A., Parra, S., Vargas, C. & Quiroz, W. Dedication of organotin compounds in sediment samples by dispersive liquid–liquid microextraction adopted by fuel chromatography–Pulsed flame photometric detection (DLLME-GC-PFPD). Microchem. J. 134, 49 (2017).

    CAS 
    Article 

    Google Scholar 

  • Seebunrueng, Ok., Santaladchaiyakit, Y. & Srijaranai, S. Vortex-assisted low density solvent based mostly demulsified dispersive liquid-liquid microextraction and high-performance liquid chromatography for the dedication of organophosphorus pesticides in water samples. Chemosphere 103, 51 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Moinfar, S. & Hosseini, M. R. M. Growth of dispersive liquid-liquid microextraction methodology for the evaluation of organophosphorus pestidides in tea. J. Hazard. Mater. 169(1–3), 907 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wang, Y. L. et al. Benzyl functionalized ionic liquid as new extraction solvent of dispersive liquid–liquid microextraction for enrichment of organophosphorus pesticides and fragrant compounds. Chin. J. Anal. Chem. 44(6), 942 (2016).

    CAS 
    Article 

    Google Scholar 

  • Cachl, J. I., Campillo, N., Vinas, P. & Hernández-Córdoba, M. In situ ionic liquid dispercsive liquid-liquid microextraction coupled to fuel chromatography-mass spectrometry for the dedication of organophosphorus pesticides. J. Chromatogr. A. 1559, 95 (2018).

    Article 
    CAS 

    Google Scholar 

  • Soisungnoen, P., Burakham, R. & Srijaranai, S. Dedication of organophosphorus pesticides utilizing dispersive liquid–liquid microextraction mixed with reversed electrode polarity stacking mode-micellar electrokinetic chromatography. Talanta 98, 62 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mao, X. J. et al. Evaluation of organophosphorus and pyrethroid pesticides in natural and traditional greens utilizing QuEChERS mixed with dispersive liquid-liquid microextraction based mostly on the solidification of floating natural droplet. Meals Chem. 309, 125755 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wang, X. H. et al. Growth of a easy combining equipment to carry out a magnetic stiring-assisted dispersive liquid–liquid microextraction and its utility for the evaluation of carbamate and organophosphorus pesticides in tea drinks. Anal. Chim. Acta 787, 71 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Yang, F. et al. Simultaneous dedication of fungicides and carbamates in tobacco by extremely efficiency convergence chromatography–tandem mass spectrometry coupled with modified QuEChERS. Microchem. J. 171, 106849 (2021).

    CAS 
    Article 

    Google Scholar 

  • Chen, H., Chen, R. W. & Li, S. Q. Low-density extraction solvent-based solvent terminated dispersive liquid-liquid microextraction mixed with fuel chromatography-tandem mass spectrometry for the dedication of carbamate pesticedes in water samples. J. Chromatogr. A. 1217(8), 1244 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Liu, Z. M. et al. Novel methodology for the dedication of 5 carbamate pesticides in water samples by dispersive liquid–liquid microextraction mixed with excessive efficiency liquid chromatography. Chin. Chem. Lett. 20(2), 213 (2009).

    CAS 
    Article 

    Google Scholar 

  • Ma, L. F. et al. Delelopment of QuEChERS-DLLME methodology for dedication of neonicotinodi pesticide residues in grains by liquid chromatography-tandem mass spectrometry. Meals Chem. 331, 127190 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Caldeirao, L. et al. A novel dispersive liquid–liquid microextraction utilizing a low density deep eutectic solvent-gas chromatography tandem mass spectrometry for the dedication of polycyclic fragrant hydrocarbons in delicate drinks. J. Chromatogr. A 1635, 461736 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Slamova, T. et al. Software of QuEChERS-EMR-Lipid-DLLME methodology for the dedication of polycyclic fragrant hydrocarbons in smoked meals of animal origin. J. Meals Compos. Anal. 87, 103420 (2021).

    Article 
    CAS 

    Google Scholar 

  • George, M. J., Tagwa, O. R. & Sichilongo, Ok. Extraction of polycyclic fragrant hydrocarbons from aqueous answer utilizing agitation-assisted liquid-liquid microextraction with a floating natural solvent collexted by way of a pasteur pipette. Polycyclic Aromat. Compd. 41(9), 1862 (2021).

    CAS 
    Article 

    Google Scholar 

  • Timofeeva, I., Stepanova, Ok. & Bulatov, A. In-a-syring surfactant-assisted dispersive liquid-liquid microextraction of polycyclic fragrant hydrocarbons in supramolecular solvent from tea infusion. Talanta 224, 121888 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ho, Y. M., Tsoi, Y. Ok. & Leung, Ok. S. Y. Extremely delicate and selective organophosphate screening in twelve commodities of fruits, greens and natural medicines by dispersive liquid-liquid microextraction. Anal. Chim. Acta 775, 58 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dabbagh, M. S. & Farajzadeh, M. A. Introduction of a brand new process for the synthesis of polysulfone magnetic nanoparticles and their utility in magnetic strong part extraction for the extraction of some pesticides from fruit and vegetable juices. Microchem. J. 158, 105238 (2020).

    Article 
    CAS 

    Google Scholar 

  • Liu, D. & Min, S. Speedy evaluation of organochlorine and pyrethroid pesticides in tea samples by instantly suspended droplet microextraction utilizing a fuel chromatography–electron seize detector. J Chromatogr. A. 1235, 166–173 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ravelo-Pérez, L. M., Hernández-Borges, J. & Rodríguez-Delgado, M. A. Multi-walled carbon nanotubes as environment friendly solid-phase extraction supplies of organophosphorus pesticides from apple, grape, orange and pineapple fruit juices. J. Chromatogr. A. 1211, 33–42 (2008).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Mohebbi, A. et al. Mixture of poly (ε-caprolactone) grafted graphene quantum dots-based dispersive strong part extraction adopted by dispersive liquid–liquid microextraction for extraction of some pesticides from fruit juices previous to their quantification by fuel chromatography. Microchem. J. 153, 104328 (2020).

    CAS 
    Article 

    Google Scholar 

  • Farajzadeh, M. A., Mohebbi, A., Fouladvand, H. & Mogaddam, M. R. A. A brand new and facile methodology for preparation of amorphous carbon nanoparticles and their utility as an environment friendly and low-cost sorbent for the extraction of some pesticides from fruit juices. Microchem. J. 155, 104795 (2020).

    CAS 
    Article 

    Google Scholar 

  • Li, S. et al. Sequential dispersive liquid–liquid microextraction for the dedication of aryloxyphenoxy–propionate herbicides in water. J. Sep. Sci. 35, 3389–3395 (2012).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Navalon, A., Prieto, A., Araujo, L. & Vılchez, J. L. Dedication of oxadiazon residues by headspace solid-phase microextraction and fuel chromatography–mass spectrometry. J. Chromatogr. A. 946, 239–245 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Farajzadeh, M. A., Pezhhanfar, S. & Mohebbi, A. Growth of a dispersive strong part extraction process utilizing a pure adsorbent as an environment friendly and costless sorbent adopted by dispersive liquid–liquid microextraction. Int. J. Environ. Anal. Chem. https://doi.org/10.1080/03067319.2019.1685667 (2019).

    Article 

    Google Scholar 

  • Facebook
    Twitter
    Pinterest
    WhatsApp
    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments