Wednesday, September 28, 2022
HomeMicrobiologyFood regimen-driven microbial ecology underpins associations between most cancers immunotherapy outcomes and...

Food regimen-driven microbial ecology underpins associations between most cancers immunotherapy outcomes and the intestine microbiome

Facebook
Twitter
Pinterest
WhatsApp

  • Seidel, J. A., Otsuka, A. & Kabashima, Ok. Anti-PD-1 and anti-CTLA-4 therapies in most cancers: mechanisms of motion, efficacy, and limitations. Entrance Oncol. 8, 86 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Larkin, J. et al. 5-year survival with mixed nivolumab and ipilimumab in superior melanoma. N. Engl. J. Med. 381, 1535–1546 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Larkin, J. et al. Mixed nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 373, 23–34 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Wolchok, J. D. et al. General survival with mixed nivolumab and ipilimumab in superior melanoma. N. Engl. J. Med. 377, 1345–1356 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lengthy, G. V. et al. Normal-dose pembrolizumab together with reduced-dose ipilimumab for sufferers with superior melanoma (KEYNOTE-029): an open-label, part 1b trial. Lancet Oncol. 18, 1202–1210 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lengthy, G. V. et al. Mixture nivolumab and ipilimumab or nivolumab alone in melanoma mind metastases: a multicentre randomised part 2 examine. Lancet Oncol. 19, 672–681 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Rozeman, E. A. et al. Identification of the optimum mixture dosing schedule of neoadjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma (OpACIN-neo): a multicentre, part 2, randomised, managed trial. Lancet Oncol. 20, 948–960 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Menzies, A. M. et al. Pathological response and survival with neoadjuvant remedy in melanoma: a pooled evaluation from the Worldwide Neoadjuvant Melanoma Consortium (INMC). Nat. Med. 27, 301–309 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Rozeman, E. A. et al. Survival and biomarker analyses from the OpACIN-neo and OpACIN neoadjuvant immunotherapy trials in stage III melanoma. Nat. Med. 27, 256–263 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Luke, J. J., Flaherty, Ok. T., Ribas, A. & Lengthy, G. V. Focused brokers and immunotherapies: optimizing outcomes in melanoma. Nat. Rev. Clin. Oncol. 14, 463–482 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Grainger, J., Daw, R. & Wemyss, Ok. Systemic instruction of cell-mediated immunity by the intestinal microbiome. F1000Res 7, (2018).

  • Harkiolaki, M. et al. T cell-mediated autoimmune illness because of low-affinity crossreactivity to widespread microbial peptides. Immunity 30, 348–357 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Horai, R. et al. Microbiota-dependent activation of an autoreactive t cell receptor provokes autoimmunity in an immunologically privileged web site.Immunity 43, 343–353 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Parada Venegas, D. et al. Quick chain fatty acids (scfas)-mediated intestine epithelial and immune regulation and its relevance for inflammatory bowel illnesses. Entrance Immunol. 10, 277 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Steed, A. L. et al. The microbial metabolite desaminotyrosine protects from influenza by means of sort I interferon. Science 357, 498–502 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bachem, A. et al. Microbiota-derived short-chain fatty acids promote the reminiscence potential of antigen-activated CD8(+) T cells. Immunity 51(2), 285–297.e5, https://doi.org/10.1016/j.immuni.2019.06.002 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Marchesi, J. R. et al. The intestine microbiota and host well being: a brand new scientific frontier. Intestine 65, 330–339 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Matson, V. et al. The commensal microbiome is related to anti-PD-1 efficacy in metastatic melanoma sufferers. Science 359, 104–108 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gopalakrishnan, V. et al. Intestine microbiome modulates response to anti-PD-1 immunotherapy in melanoma sufferers. Science 359, 97–103 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Routy, B. et al. Intestine microbiome influences efficacy of PD-1-based immunotherapy in opposition to epithelial tumors. Science 359, 91–97 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Vetizou, M. et al. Anticancer immunotherapy by CTLA-4 blockade depends on the intestine microbiota. Science 350, 1079–1084 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Chaput, N. et al. Baseline intestine microbiota predicts scientific response and colitis in metastatic melanoma sufferers handled with ipilimumab. Ann. Oncol. 28, 1368–1379 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Coutzac, C. et al. Systemic brief chain fatty acids restrict antitumor impact of CTLA-4 blockade in hosts with most cancers. Nat. Commun. 11, 2168 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Smith, M. et al. Intestine microbiome correlates of response and toxicity following anti-CD19 CAR T cell remedy. Nat. Med. 28, 713–723 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Andrews, M. C. et al. Intestine microbiota signatures are related to toxicity to mixed CTLA-4 and PD-1 blockade. Nat. Med. 27, 1432–1441 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • McCulloch, J. A. et al. Intestinal microbiota signatures of scientific response and immune-related hostile occasions in melanoma sufferers handled with anti-PD-1. Nat. Med. 28, 545–556, https://doi.org/10.1038/s41591-022-01698-2 (2022).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Lee, Ok. A. et al. Cross-cohort intestine microbiome associations with immune checkpoint inhibitor response in superior melanoma. Nat. Med. 28, 535–544, https://doi.org/10.1038/s41591-022-01695-5 (2022).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gharaibeh, R. Z. & Jobin, C. Microbiota and most cancers immunotherapy: in the hunt for microbial indicators. Intestine 68, 385–388, https://doi.org/10.1136/gutjnl-2018-317220 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Tetzlaff, M. T. et al. Pathological evaluation of resection specimens after neoadjuvant remedy for metastatic melanoma. Ann. Oncol. 29, 1861–1868 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Amaria, R. N. et al. Neoadjuvant systemic remedy in melanoma: suggestions of the Worldwide Neoadjuvant Melanoma Consortium. Lancet Oncol. 20, e378–e389 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Frankel, A. E. et al. Metagenomic shotgun sequencing and unbiased metabolomic profiling determine particular human intestine microbiota and metabolites related to immune checkpoint remedy efficacy in melanoma sufferers. Neoplasia 19, 848–855 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Peters, B. A. et al. Relating the intestine metagenome and metatranscriptome to immunotherapy responses in melanoma sufferers. Genome Med 11, 61 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Yu, L. C. Microbiota dysbiosis and barrier dysfunction in inflammatory bowel illness and colorectal cancers: exploring a typical floor speculation. J. Biomed. Sci. 25, 79 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rajca, S. et al. Alterations within the intestinal microbiome (dysbiosis) as a predictor of relapse after infliximab withdrawal in Crohn’s illness. Inflamm. Bowel Dis. 20, 978–986 (2014).

    PubMed 

    Google Scholar 

  • Bang, C. & Schmitz, R. A. Archaea related to human surfaces: to not be underestimated. FEMS Microbiol. Rev. 39, 631–648 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Smith, N. W., Shorten, P. R., Altermann, E. H., Roy, N. C. & McNabb, W. C. Hydrogen cross-feeders of the human gastrointestinal tract. Intestine Microbes 10, 270–288 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Belkaid, Y. & Hand, T. W. Function of the microbiota in immunity and irritation. Cell 157, 121–141 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Llewellyn, S. R. et al. Interactions between weight loss program and the intestinal microbiota alter intestinal permeability and colitis severity in mice. Gastroenterology 154, e1032 (2018).

    Article 

    Google Scholar 

  • Nestel, P. et al. Indications for omega-3 lengthy chain polyunsaturated fatty acid within the prevention and therapy of heart problems. Coronary heart Lung Circ. 24, 769–779 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Macia, L. et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced intestine homeostasis by means of regulation of the inflammasome. Nat. Commun. 6, 6734 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chiba, M., Nakane, Ok. & Komatsu, M. Westernized weight loss program is probably the most ubiquitous environmental think about inflammatory bowel illness. Perm. J. 23, 18–107 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Watson, H. et al. A randomised trial of the impact of omega-3 polyunsaturated fatty acid dietary supplements on the human intestinal microbiota. Intestine 67, 1974–1983 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lam, Y. Y. et al. Results of dietary fats profile on intestine permeability and microbiota and their relationships with metabolic modifications in mice. Obes. (Silver Spring) 23, 1429–1439 (2015).

    CAS 
    Article 

    Google Scholar 

  • Mager, L. F. et al. Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. Science 369, 1481–1489 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dubin, Ok. et al. Intestinal microbiome analyses determine melanoma sufferers in danger for checkpoint-blockade-induced colitis. Nat. Commun. 7, 10391 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Chen, J., Zhao, Ok.N. & Vitetta, L. Results of intestinal microbial(-)elaborated butyrate on oncogenic signaling pathways. Vitamins 11(5), 1026 (2019).

    CAS 
    PubMed Central 
    Article 

    Google Scholar 

  • He, Y. et al. Regional variation limits functions of wholesome intestine microbiome reference ranges and illness fashions. Nat. Med. 24, 1532–1535 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Arumugam, M. et al. Enterotypes of the human intestine microbiome. Nature 473, 174–180 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Holmes, I., Harris, Ok. & Quince, C. Dirichlet multinomial mixtures: generative fashions for microbial metagenomics. PLoS One 7, e30126 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wu, G. D. et al. Linking long-term dietary patterns with intestine microbial enterotypes. Science 334, 105–108 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Costea, P. I. et al. Enterotypes within the panorama of intestine microbial neighborhood composition. Nat. Microbiol 3, 8–16 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Singh, R. Ok. et al. Affect of weight loss program on the intestine microbiome and implications for human well being. J. Transl. Med 15, 73 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Chung, D. & Keles, S. Sparse partial least squares classification for prime dimensional knowledge. Stat Appl Genet Mol Biol 9(1), (2010).

  • Spencer, C. N. et al. Dietary fiber and probiotics affect the intestine microbiome and melanoma immunotherapy response. Science 374, 1632–1640 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kovatcheva-Datchary, P. et al. Dietary fiber-induced enchancment in glucose metabolism is related to elevated abundance of prevotella. Cell Metab. 22, 971–982 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zeevi, D. et al. Personalised diet by prediction of glycemic responses. Cell 163, 1079–1094 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zmora, N. et al. Personalised intestine mucosal colonization resistance to empiric probiotics is related to distinctive host and microbiome options. Cell 174, 1388–1405 e1321 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lam, Ok. C. et al. Microbiota triggers STING-type I IFN-dependent monocyte reprogramming of the tumor microenvironment. Cell https://doi.org/10.1016/j.cell.2021.09.019 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baruch, E. N. et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma sufferers. Science 371(6529), 602–609, https://doi.org/10.1126/science.abb5920 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Davar, D. et al. Fecal microbiota transplant overcomes resistance to anti-PD-1 remedy in melanoma sufferers. Science 371, 595–602 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Callahan, B. J. et al. DADA2: Excessive-resolution pattern inference from Illumina amplicon knowledge. Nat. Strategies 13, 581–583 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • McMurdie, J. & Holmes, S. Phyloseq: an R package deal for reproducible interactive evaluation and graphics of microbiome census knowledge. PLoS One 8, e61217 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Segata, N. et al. Metagenomic biomarker discovery and clarification. Genome Biol. 12, R60 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sidhu, P. et al. Radiological manifestations of immune-related hostile results noticed in sufferers with melanoma present process immunotherapy. J. Med Imaging Radiat. Oncol. 61, 759–766 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Franzosa, E. A. et al. Species-level purposeful profiling of metagenomes and metatranscriptomes. Nat. Strategies 15, 962–968 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Suzek, B. E. et al. UniRef clusters: a complete and scalable various for enhancing sequence similarity searches. Bioinformatics 31, 926–932 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Caspi, R. et al. The MetaCyc database of metabolic pathways and enzymes. Nucleic Acids Res. 46, D633–D639 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome Datasets Are Compositional: And This Is Not Elective. Entrance Microbiol 8, 2224 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rohart, F., Gautier, B., Singh, A. & Le Cao, Ok. A. mixOmics: An R package deal for ‘omics function choice and a number of knowledge integration. PLoS Comput. Biol. 13, e1005752 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Zoll, J. et al. Fecal microbiota transplantation from excessive caloric-fed donors alters glucose metabolism in recipient mice, independently of adiposity or train standing. Am. J. Physiol. Endocrinol. Metab. 319, E203–E216 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Siebelink, E., Geelen, A. & de Vries, J. H. Self-reported power consumption by FFQ in contrast with precise power consumption to take care of physique weight in 516 adults. Br. J. Nutr. 106, 274–281 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Metsalu, T. & Vilo, J. ClustVis: an online instrument for visualizing clustering of multivariate knowledge utilizing Principal Part Evaluation and heatmap. Nucleic Acids Res. 43, W566–W570 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Shanahan, E. R. et al. Affect of cigarette smoking on the human duodenal mucosa-associated microbiota. Microbiome 6, 150 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ramirez-Farias, C. et al. Impact of inulin on the human intestine microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. Br. J. Nutr. 101, 541–550 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mackie, R. I. et al. Ecology of uncultivated Oscillospira species within the rumen of cattle, sheep, and reindeer as assessed by microscopy and molecular approaches. Appl. Environ. Microbiol. 69, 6808–6815 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Yanagita, Ok. et al. Circulation cytometric sorting, phylogenetic evaluation and in situ detection of Oscillospira guillermondii, a big, morphologically conspicuous however uncultured ruminal bacterium. Int J. Syst. Evol. Microbiol 53, 1609–1614 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hook, S. E., Northwood, Ok. S., Wright, A. D. & McBride, B. W. Lengthy-term monensin supplementation doesn’t considerably have an effect on the amount or variety of methanogens within the rumen of the lactating dairy cow. Appl. Environ. Microbiol. 75, 374–380 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ohnishi, A. et al. Growth of a 16S rRNA gene primer and PCR-restriction fragment size polymorphism methodology for fast detection of members of the genus Megasphaera and species-level identification. Appl. Environ. Microbiol. 77, 5533–5535 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Layton, A. et al. Growth of Bacteroides 16S rRNA gene TaqMan-based real-time PCR assays for estimation of whole, human, and bovine fecal air pollution in water. Appl. Environ. Microbiol. 72, 4214–4224 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Schneeberger, M. et al. Akkermansia muciniphila inversely correlates with the onset of irritation, altered adipose tissue metabolism and metabolic problems throughout weight problems in mice. Sci. Rep. 5, 16643 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • & Geirnaert, A. et al. Interindividual variations in response to therapy with butyrate-producing Butyricicoccus pullicaecorum 25-3 T studied in an in vitro intestine mannequin. FEMS Microbiol Ecol 91, (2015).

  • Hermann-Financial institution, M. L., Skovgaard, Ok., Stockmarr, A., Larsen, N. & Molbak, L. The Intestine Microbiotassay: a high-throughput qPCR method combinable with subsequent technology sequencing to review intestine microbial variety. BMC Genomics 14, 788 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Facebook
    Twitter
    Pinterest
    WhatsApp
    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments