Wednesday, September 28, 2022
HomeChemistryFirst-principles research of defect behaviour in bismuth germanate

First-principles research of defect behaviour in bismuth germanate

Facebook
Twitter
Pinterest
WhatsApp

  • Weber, M. J. Inorganic scintillators: At this time and tomorrow. J. Lumin. 100, 35–45 (2002).

    CAS 
    Article 

    Google Scholar 

  • Lecoq, P., Annenkov, A., Gektin, A., Korzhik, M. & Pedrini, C. Affect of the crystal construction defects on scintillation properties. Inorg. Scintill. Detect. Syst. Phys. Princ. Cryst. Eng. 123–173 (2006).

  • Van Eijk, C. Inorganic scintillators for the subsequent era of neutron beam amenities. In Proceedings of the Fifth Worldwide Convention on Inorganic Scintillators and Their Functions, 22–32 (Moscow State College, 2000).

  • McDonald, Okay. A., McDonald, M. R., Bailey, M. N. & Schweitzer, G. Okay. Parametric examine on the manufacturing of the gagg: Ce and lso: Ce multicomponent oxide scintillator supplies by way of use of a planetary ball mill. Dalton Trans. 47, 13190–13203 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Robbins, D. On predicting the utmost effectivity of phosphor techniques excited by ionizing radiation. J. Electrochem. Soc. 127, 2694 (1980).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Blasse, G. Luminescent supplies: Is there nonetheless information?. J. Alloy. Compd. 225, 529–533 (1995).

    CAS 
    Article 

    Google Scholar 

  • Stanek, C., McClellan, Okay., Levy, M. & Grimes, R. Defect conduct in uncommon earth re al o 3 scintillators. J. Appl. Phys. 99, 113518 (2006).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Casey, M. & Nutt, R. A multicrystal two dimensional bgo detector system for positron emission tomography. IEEE Trans. Nucl. Sci. 33, 460–463 (1986).

    ADS 
    Article 

    Google Scholar 

  • Tekin, H. et al. Newly developed bgo glasses: synthesis, optical and nuclear radiation shielding properties. Ceram. Int. 46, 11861–11873 (2020).

    CAS 
    Article 

    Google Scholar 

  • Weber, M. J. & Monchamp, R. R. Luminescence of bi4 ge3 o12: Spectral and decay properties. J. Appl. Phys. 44, 5495–5499 (1973).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Kobayashi, M., Ishii, M., Harada, Okay. & Yamaga, I. Bismuth silicate bi4si3o12, a quicker scintillator than bismuth germanate bi4ge3o12. Nucl. Instrum. Strategies Phys. Res. Sect. A 372, 45–50 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Chen, F. et al. Construction and luminescence properties of a nd 3+ doped bi 4 ge 3 o 12 scintillation crystal: New insights from a complete examine. J. Mater. Chem. C 5, 3079–3087 (2017).

    CAS 
    Article 

    Google Scholar 

  • Lalic, M. & Souza, S. The primary-principles examine of digital and optical properties of bgo and bso scintillators. Decide. Mater. 30, 1189–1192 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Raymond, S., Luff, B., Townsend, P., Feng, X. & Hu, G. Thermoluminescence spectra of doped bi4ge3o12. Radiat. Meas. 23, 195–202 (1994).

    CAS 
    Article 

    Google Scholar 

  • Jackson, R. & Valerio, M. Laptop modelling of radiation generated defects in bgo scintillators. Nucl. Instrum. Strategies Phys. Res. Sect. B 218, 145–147 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Zhu, J., Gu, M., Jia, L. & Track, G. Structural properties of lu2sio5 doped with rare-earth parts. Mater. Lett. 256, 126410 (2019).

    CAS 
    Article 

    Google Scholar 

  • Liu, B. et al. First-principles examine of oxygen vacancies in lu2sio5. J. Phys. Condens. Matter 19, 436215 (2007).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Zulueta, Y., Lim, T. & Dawson, J. Defect clustering in rare-earth-doped batio3 and srtio3 and its affect on dopant incorporation. J. Phys. Chem. C 121, 23642–23648 (2017).

    CAS 
    Article 

    Google Scholar 

  • Gökçe, M. Growth of eu3+ doped bismuth germanate glasses for purple laser functions. J. Non-Cryst. Solids 505, 272–278 (2019).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • He, L. et al. Perception into the traits of 4f-related digital transitions for rare-earth-doped klus2 luminescent supplies by way of first-principles calculation. J. Phys. Chem. C 124, 932–938 (2019).

    Article 
    CAS 

    Google Scholar 

  • Cates, J. W. & Levin, C. S. Electronics methodology to advance the coincidence time decision with bismuth germanate. Phys. Med. Biol. 64, 175016 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Jazmati, A. & Townsend, P. Photoluminescence from re doped bgo waveguides. Nucl. Instrum. Strategies Phys. Res. Sect. B 166, 597–601 (2000).

    ADS 
    Article 

    Google Scholar 

  • Feng, X.-Q. et al. Development, laser and magneto-optic properties of nd-doped bi4ge3o12 crystals. Mater. Sci. Eng. B 23, 83–87 (1994).

    Article 

    Google Scholar 

  • Arslanlar, Y. T., Kotan, Z., Kibar, R., Canımoğlu, A. & Can, N. Uncommon earth photoluminescence in bismuth-germanate crystals. Spectrosc. Lett. 46, 590–596 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Mares, J. et al. Time improvement of scintillating response in ce-or pr-doped crystals. Phys. Standing Solidi c 4, 996–999 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Frindell, Okay. L. et al. Seen and near-ir luminescence through power switch in uncommon earth doped mesoporous titania skinny movies with nanocrystalline partitions. J. Strong State Chem. 172, 81–88 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Sousa, O., Lima, A. & Lalic, M. New insights into the digital and optical properties of the bi4m3o12 (m= si or ge) scintillators. Decide. Mater. 73, 642–646 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Rodriguez, J. R. et al. Bismuth germanate (bi 4 ge 3 o 12), a promising high-capacity lithium-ion battery anode. Chem. Commun. 54, 11483–11486 (2018).

    CAS 
    Article 

    Google Scholar 

  • Isik, M., Surucu, G., Gencer, A. & Gasanly, N. M. First rules examine of bi12geo20: Digital, optical and thermodynamic characterizations. Mater. At this time Commun. 27, 102299 (2021).

    CAS 
    Article 

    Google Scholar 

  • Akande, S. O., Chroneos, A., Vasilopoulou, M., Kennou, S. & Schwingenschlögl, U. Emptiness formation in moo 3: Hybrid density useful principle and photoemission experiments. J. Mater. Chem. C 4, 9526–9531 (2016).

    CAS 
    Article 

    Google Scholar 

  • Ning, L., Cheng, W., Zhou, C., Duan, C. & Zhang, Y. Energetic, optical, and digital properties of intrinsic electron-trapping defects in yalo3: A hybrid dft examine. J. Phys. Chem. C 118, 19940–19947 (2014).

    CAS 
    Article 

    Google Scholar 

  • Milenov, T., Rafailov, P., Petrova, R., Kargin, Y. F. & Gospodinov, M. X-ray diffraction examine of a bi4ge3o12 crystal. Mater. Sci. Eng. B 138, 35–40 (2007).

    CAS 
    Article 

    Google Scholar 

  • Santana, G. C., De Mello, A. C. S., Valerio, M. E. & Macedo, Z. S. Scintillating properties of pure and doped bgo ceramics. J. Mater. Sci. 42, 2231–2235 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Polosan, S., Galca, A. & Secu, M. Band-gap correlations in bi4ge3o12 amorphous and glass-ceramic supplies. Strong State Sci. 13, 49–53 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Akande, S. O., Chroneos, A. & Schwingenschlögl, U. O emptiness formation in (pr/gd) baco 2 o 5.5 and the position of antisite defects. Phys. Chem. Chem. Phys. 19, 11455–11459 (2017).

    Article 

    Google Scholar 

  • Li, M., Li, J., Guo, C. & Zhang, L. Doping bismuth oxyhalides with indium: A dft calculations on tuning digital and optical properties. Chem. Phys. Lett. 705, 31–37 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Kweon, Okay. E. & Hwang, G. S. Hybrid density useful examine of the structural, bonding, and digital properties of bismuth vanadate. Phys. Rev. B 86, 165209 (2012).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Iori, F. et al. Bismuth iron garnet: Ab initio examine of digital properties. Phys. Rev. B 100, 245150 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Kuganathan, N. & Chroneos, A. Defects and dopants in cafesi2o6: Classical and dft simulations. Energies 13, 1285 (2020).

    CAS 
    Article 

    Google Scholar 

  • Liu, X.-Y., Pilania, G., Talapatra, A. A., Stanek, C. R. & Uberuaga, B. P. Band-edge engineering to eradicate radiation-induced defect states in perovskite scintillators. ACS Appl. Mater. Interfaces 12, 46296–46305 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hu, C. et al. Antisite defects in nonstoichiometric lu3al5o12: Ce ceramic scintillators. Phys. Standing Solidi (b) 252, 1993–1999 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Kempaiah Devaraju, M., Duc Truong, Q., Hyodo, H., Sasaki, Y. & Honma, I. Synthesis, characterization and statement of antisite defects in linipo4 nanomaterials. Sci. Rep. 5, 1–8 (2015).

    Article 

    Google Scholar 

  • Dey, U., Chatterjee, S. & Taraphder, A. Antisite-disorder engineering in la-based oxide heterostructures through oxygen emptiness management. Phys. Chem. Chem. Phys. 20, 17871–17880 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zhydachevskyy, Y. et al. Band hole engineering and entice depths of intrinsic level defects in ralo3 (r= y, la, gd, yb, lu) perovskites. J. Phys. Chem. C 125, 26698–26710 (2021).

    CAS 
    Article 

    Google Scholar 

  • Shannon, R. D. Revised efficient ionic radii and systematic research of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 32, 751–767 (1976).

    ADS 
    Article 

    Google Scholar 

  • El Sayed, M. E., Naji, S., Murshed, M. N. & Samir, A. Cation substitution for tunable digital, optical and scintillation properties of pb1-xcaxwo4 supplies: A density useful principle examine. Outcomes Phys. 30, 104826 (2021).

    Article 

    Google Scholar 

  • Antonangeli, F., Zema, N., Piacentini, M. & Grassano, U. Reflectivity of bismuth germanate. Phys. Rev. B 37, 9036 (1988).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Kresse, G. & Furthmüller, J. Environment friendly iterative schemes for ab initio total-energy calculations utilizing a plane-wave foundation set. Phys. Rev. B 54, 11169 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Perdew, J. P., Burke, Okay. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865 (1996).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ernzerhof, M. & Scuseria, G. E. Evaluation of the perdew-burke-ernzerhof exchange-correlation useful. J. Chem. Phys. 110, 5029–5036 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Dar, S. A., Sharma, R., Srivastava, V. & Sakalle, U. Okay. Investigation on the digital construction, optical, elastic, mechanical, thermodynamic and thermoelectric properties of large band hole semiconductor double perovskite ba 2 intao 6. RSC Adv. 9, 9522–9532 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Facebook
    Twitter
    Pinterest
    WhatsApp
    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments