Friday, September 30, 2022
HomeChemistryExcessive-throughput screening of room temperature lively Peltier cooling supplies in Heusler compounds

Excessive-throughput screening of room temperature lively Peltier cooling supplies in Heusler compounds

Facebook
Twitter
Pinterest
WhatsApp

  • Domke, Ok. & Skrzypczak, A. Peltier modules in cooling system for digital parts. WIT trans. Eng. Sci. 68, 3–12 (2010).

    CAS 
    Article 

    Google Scholar 

  • Wijngaards, D. & Wolffenbuttel, R. F. Examine on temperature stability enchancment of on-chip reference components utilizing built-in Peltier coolers. IEEE Trans. Instrum. Meas. 52, 478–482 (2003).

    Article 

    Google Scholar 

  • Kim, J., Oh, J. & Lee, H. Evaluate on battery thermal administration system for electrical automobiles. Appl. Therm. Eng. 149, 192–212 (2019).

    Article 

    Google Scholar 

  • Maruyama, S., Komiya, A., Takeda, H. & Aiba, S. Growth of precise-temperature-controlled cooling equipment for medical software through the use of Peltier impact. Int. Conf. Biomed. Eng. Inf. 2, 610–614 (2008).

    Google Scholar 

  • Pop, E., Sinha, S. & Goodson, Ok. E. Warmth technology and transport in nanometer-scale transistors. Proc. IEEE 94, 1587–1601 (2006).

    CAS 
    Article 

    Google Scholar 

  • Shakouri, A. Nanoscale thermal transport and microrefrigerators on a chip. Proc. IEEE 94, 1613–1638 (2006).

    CAS 
    Article 

    Google Scholar 

  • Nimmagadda, L. A. & Sinha, S. Thermoelectric property necessities for on-chip cooling of gadget transients. IEEE Trans. Electron Dev. 67, 3716–3721 (2020).

    CAS 
    Article 

    Google Scholar 

  • Adams, M. J., Verosky, M., Zebarjadi, M. & Heremans, J. P. Energetic Peltier coolers based mostly on correlated and Magnon-Drag metals. Phys. Rev. Appl. 11, 054008 (2019).

    CAS 
    Article 

    Google Scholar 

  • Zebarjadi, M. Digital cooling utilizing thermoelectric units. Appl. Phys. Lett. 106, 203506 (2015).

    Article 

    Google Scholar 

  • Mao, J., Chen, G. & Ren, Z. Thermoelectric cooling supplies. Nat. Mater. 20, 454–461 (2021).

    CAS 
    Article 

    Google Scholar 

  • Smith, L. J. B., Corbin, S. F., Hexemer, R. L., Donaldson, I. W. & Bishop, D. P. Growth and processing of novel aluminum powder metallurgy supplies for warmth sink purposes. Metall. Mater. Trans. A 45, 980–989 (2014).

    CAS 
    Article 

    Google Scholar 

  • Hanumanthrappa, R., Dassappa, S. & Ananda, G. Ok. Thermal evaluation on warmth sink made up of aluminium alloys with copper compositions. Mater. At this time.: Proc. 42, 493–499 (2020).

    Google Scholar 

  • Zhao, W. et al. Enhanced thermoelectric efficiency in barium and indium double-filled Skutterudite Bulk supplies by way of orbital hybridization induced by indium filler. J. Am. Chem. Soc. 131, 3713–3720 (2009).

    CAS 
    Article 

    Google Scholar 

  • Shi, X. et al. A number of-filled skutterudites: excessive thermoelectric determine of advantage via individually optimizing electrical and thermal transports. J. Am. Chem. Soc. 133, 7837–7846 (2012).

    Article 

    Google Scholar 

  • Hsu, Ok. F. et al. Cubic AgPbmSbTe2+m: Bulk thermoelectric supplies with excessive determine of advantage. Science 303, 818–821 (2004).

    CAS 
    Article 

    Google Scholar 

  • Biswas, Ok. et al. Excessive-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414–418 (2012).

    CAS 
    Article 

    Google Scholar 

  • Shi, X. et al. Low thermal conductivity and excessive thermoelectric determine of advantage in n-type BaxYbyCo(4)Sb(12) double-filled skutterudites. Appl. Phys. Lett. 92, 182101 (2008).

    Article 

    Google Scholar 

  • Fang, T. et al. Advanced band buildings and lattice dynamics of Bi2Te3-based compounds and strong options. Adv. Funct. Mater. 29, 1900677 (2019).

    Article 

    Google Scholar 

  • Xu, Z. et al. Attaining excessive mid-temperature efficiency in (Bi,Sb)(2)Te-3 thermoelectric supplies by way of synergistic optimization. NPG Asia Mater. 8, e302 (2016).

    CAS 
    Article 

    Google Scholar 

  • Kim, T. Y., Park, C. H. & Marzari, N. The digital thermal conductivity of graphene. Nano Lett. 16, 2439–2443 (2016).

    CAS 
    Article 

    Google Scholar 

  • Markov, M., Rezaei, S. E., Sadeghi, S. N., Esfarjani, Ok. & Zebarjadi, M. Thermoelectric properties of semimetals. Phys. Rev. Mater. 3, 095401 (2019).

    CAS 
    Article 

    Google Scholar 

  • Yang, J. et al. Analysis of Half-Heusler compounds as thermoelectric supplies based mostly on the calculated electrical transport properties. Adv. Funct. Mater. 18, 2880–2888 (2008).

    CAS 
    Article 

    Google Scholar 

  • Yu, J., Xia, Ok., Zhao, X. & Zhu, T. Excessive efficiency p-type half-Heusler thermoelectric supplies. J. Phys. D.-Appl. Phys. 51, 113001 (2018).

    Article 

    Google Scholar 

  • Zhu, T., Fu, C., Xie, H., Liu, Y. & Zhao, X. Excessive-efficiency Half-Heusler thermoelectric supplies for vitality harvesting. Adv. Power Mater. 5, 1500588 (2015).

    Article 

    Google Scholar 

  • Xia, Ok. et al. Quick-range order in faulty half-Heusler thermoelectric crystals. Power Environ. Sci. 12, 1568–1574 (2019).

    CAS 
    Article 

    Google Scholar 

  • Xia, Ok., Hu, C., Fu, C., Zhao, X. & Zhu, T. Half-Heusler thermoelectric supplies. Appl. Phys. Lett. 118, 140503 (2021).

    CAS 
    Article 

    Google Scholar 

  • Qiu, P., Yang, J., Huang, X., Chen, X. & Chen, L. Impact of antisite defects on band construction and thermoelectric efficiency of ZrNiSn half-Heusler alloys. Appl. Phys. Lett. 96, 152105 (2010).

    Article 

    Google Scholar 

  • Nishino, Y., Deguchi, S. & Mizutani, U. Thermal and transport properties of the Heusler-type Fe2VAl1-xGex (0 <= x <= 0.20) alloys: Impact of doping on lattice thermal conductivity, electrical resistivity, and Seebeck coefficient. Phys. Rev. B 74, 6 (2006).

    Google Scholar 

  • Garmroudi, F. et al. Solubility restrict and annealing results on the microstructure & thermoelectric properties of Fe2V1-xTaxAl1-ySiy Heusler compounds. Acta Mater. 212, 9 (2021).

    Article 

    Google Scholar 

  • Garmroudi, F. et al. Boosting the thermoelectric efficiency of Fe2VAl-type Heusler compounds by band engineering. Phys. Rev. B 103, 14 (2021).

    Article 

    Google Scholar 

  • Parzer, M. et al. Excessive solubility of Al and enhanced thermoelectric efficiency attributable to resonant states in Fe2VAlx. Appl. Phys. Lett. 120, 7 (2022).

    Article 

    Google Scholar 

  • MatHub-3d. http://www.mathub3d.web.

  • Yao, M. et al. Supplies informatics platform with three-dimensional buildings, workflow and thermoelectric purposes. Sci. Information 8, 236 (2021).

    CAS 
    Article 

    Google Scholar 

  • Li, X. et al. Defect-mediated Rashba engineering for optimizing electrical transport in thermoelectric BiTeI. npj Comput. Mater. 6, 107 (2020).

    CAS 
    Article 

    Google Scholar 

  • Ioffe A. F. Semiconductor Thermoelements and Thermoelectric Cooling. Infosearch Restricted, London (1957).

  • Yang, J. et al. Energy issue enhancement in mild valence band p-type skutterudites. Appl. Phys. Lett. 101, 022101 (2012).

    Article 

    Google Scholar 

  • Xi, L. et al. Discovery of high-performance thermoelectric chalcogenides via dependable high-throughput materials screening. J. Am. Chem. Soc. 140, 10785–10793 (2018).

    CAS 
    Article 

    Google Scholar 

  • Zuo, Q. et al. Thermal conductivity of the diamond-Cu composites with chromium addition. Adv. Mater. Res. 311313, 287–292 (2011).

    Article 

    Google Scholar 

  • Cao, Y. et al. Unraveling the relationships between chemical bonding and thermoelectric properties: n-type ABO3 perovskites. J. Mater. Chem. A 10, 11039–11045 (2022).

    CAS 
    Article 

    Google Scholar 

  • Chasapis, T. C. et al. Two-band mannequin interpretation of the p- to n-transition in ternary tetradymite topological insulators. APL Mater. 3, 8 (2015).

    Article 

    Google Scholar 

  • Kresse, G. & Furthmuller, J. Environment friendly iterative schemes for ab initio total-energy calculations utilizing a plane-wave foundation set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS 
    Article 

    Google Scholar 

  • Blochl, P. E. Projector augmented-wave methodology. Phys. Rev. B Condens. matter 50, 17953–17979 (1994).

    CAS 
    Article 

    Google Scholar 

  • Solar, J., Ruzsinszky, A. & Perdew, J. P. Strongly constrained and appropriately normed semilocal density useful. Phys. Rev. Lett. 115, 036402 (2015).

    Article 

    Google Scholar 

  • Li, X. et al. TransOpt. A code to unravel electrical transport properties of semiconductors in fixed electron-phonon coupling approximation. Comput. Mater. Sci. 186, 110074 (2021).

    CAS 
    Article 

    Google Scholar 

  • Slack, G. A. Nonmetallic crystals with excessive thermal conductivity. J. Phys. Chem. Solids 34, 321–335 (1973).

    CAS 
    Article 

    Google Scholar 

  • Jia, T., Chen, G. & Zhang, Y. Lattice thermal conductivity evaluated utilizing elastic properties. Phys. Rev. B 95, 155206 (2017).

    Article 

    Google Scholar 

  • Li, R. et al. Excessive-throughput screening for superior thermoelectric supplies: diamond-like ABX(2) compounds. ACS Appl. Mater. Interfaces 11, 24859–24866 (2019).

    CAS 
    Article 

    Google Scholar 

  • Solar, L., Liu, B., Wang, J., Li, Z. & Wang, J. Theoretical research on the connection between crystal chemistry and properties of quaternary Y-Si-O-N oxynitrides. J. Am. Ceram. Soc. 99, 2442–2450 (2016).

    CAS 
    Article 

    Google Scholar 

  • Facebook
    Twitter
    Pinterest
    WhatsApp
    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments