Saturday, October 1, 2022
HomeMicrobiologyDynamics of microbial neighborhood and enzyme actions throughout preparation of Agaricus bisporus...

Dynamics of microbial neighborhood and enzyme actions throughout preparation of Agaricus bisporus compost substrate

Facebook
Twitter
Pinterest
WhatsApp

  • Royse DJ. A worldwide perspective on the excessive 5: Agaricus, Pleurotus, Lentinula, Auricularia and Flammulina. In: Singh M, editor. Proceedings of the eighth Worldwide Convention on Mushroom Biology and Mushroom Merchandise. New Delhi; 2014. p. 1–6.

  • Vos AM, Heijboer A, Boschker HTS, Bonnet B, Lugones LG, Wosten HAB. Microbial biomass in compost throughout colonization of Agaricus bisporus. AMB Specific. 2017; 7:12.

  • Jurak E, Punt AM, Arts W, Kabel MA, Gruppen H. Destiny of carbohydrates and lignin throughout composting and mycelium development of Agaricus bisporus on wheat straw primarily based compost. PLoS ONE. 2015;10:e0138909.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Beyer DM. Fundamental procedures for Agaricus mushroom rising PennState Extension: the Pennsylvania State College. 2003. https://extension.psu.edu/basic-procedures-for-agaricus-mushroom-growing.

  • Wang L, Mao J, Zhao H, Li M, Wei Q, Zhou Y, et al. Comparability of characterization and microbial communities in rice straw- and wheat straw-based compost for Agaricus bisporus manufacturing. J Ind Microbiol Biotechnol. 2016;43:1249–60.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Adams JDW, Frostick LE. Investigating microbial actions in compost utilizing mushroom (Agaricus bisporus) cultivation as an experimental system. Bioresour Technol. 2008;99:1097–102.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Liu L, Wang S, Guo X, Zhao T, Zhang B. Succession and variety of microorganisms and their affiliation with physicochemical properties throughout inexperienced waste thermophilic composting. Waste Handle. 2018;73:101–12.

    CAS 
    Article 

    Google Scholar 

  • Reyes-Torres M, Oviedo-Ocana ER, Dominguez I, Komilis D, Sanchez A. A scientific evaluate on the composting of inexperienced waste: feedstock high quality and optimization methods. Waste Handle. 2018;77:486–99.

    CAS 
    Article 

    Google Scholar 

  • Pardo‐Giménez A, González JEP, Zied DC. Casing supplies and methods in Agaricus bisporus cultivation. In: Zied DC, Pardo‐Giménez A, editors. Edible and medicinal mushrooms expertise and purposes. Chichester, UK: Wiley; 2017. p. 149–74.

  • Baars JJP, Scholtmeijer Ok, Sonnenberg ASM, van Peer A. Vital components concerned in primordia constructing in Agaricus bisporus: a evaluate. Molecules. 2020;25:2984.

  • Vieira FR, Pecchia JA. Bacterial neighborhood patterns within the Agaricus bisporus cultivation system, from compost uncooked supplies to mushroom caps. Microb Ecol. 2021;84:20–32.

    PubMed 
    Article 

    Google Scholar 

  • Kristensen JB, Thygesen LG, Felby C, Jorgensen H, Elder T. Cell-wall structural modifications in wheat straw pretreated for bioethanol manufacturing. Biotechnol Biofuels. 2008;1:1–9.

    Article 

    Google Scholar 

  • Jurak E, Patyshakuliyeva A, de Vries RP, Gruppen H, Kabel MA. Compost grown Agaricus bisporus lacks the flexibility to degrade and eat extremely substituted xylan fragments. PLoS ONE. 2015;10:e0134169.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ryckeboer J, Mergaert J, Vaes Ok, Klammer S, De Clercq D, Coosemans J, et al. A survey of micro organism and fungi occurring throughout composting and self-heating processes. Ann Microbiol. 2003;53:349–410.

    Google Scholar 

  • Kutzner HJ. Microbiology of composting. In: Rehm H-J, Reed G, editors. Biotechnology. 11c. 2nd ed. Verlag: Wiley-VCH; 2000. p. 35–100.

  • Carrasco J, Garcia-Delgado C, Lavega R, Tello ML, De Toro M, Barba-Vicente V, et al. Holistic evaluation of the microbiome dynamics within the substrates used for industrial champignon (Agaricus bisporus) cultivation. Microb Biotechnol. 2020;13:1933–47.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Vieira FR, Pecchia JA. Bacterial neighborhood patterns within the Agaricus bisporus cultivation system, from compost uncooked supplies to mushroom caps. Microb Ecol. 2021;82. https://doi.org/10.1007/s00248-021-1833-5.

  • Vieira FR, Pecchia JA. An exploration into the bacterial neighborhood underneath completely different pasteurization situations throughout substrate preparation (composting–Part II) for Agaricus bisporus cultivation. Microb Ecol. 2018;75:318–30.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cao GT, Tune TT, Shen YY, Jin QL, Feng WL, Fan LJ, et al. Variety of bacterial and fungal communities in wheat straw compost for Agaricus bisporus cultivation. Hortscience. 2019;54:100–9.

    CAS 
    Article 

    Google Scholar 

  • Wiegant WM. Development traits of the thermophilic fungus Scytalidium thermophilum in relation to manufacturing of mushroom compost. Appl Environ Microbiol. 1992;58:1301–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Fermor T, Randle P, Smith J. Compost as a substrate and its preparation. In: Flegg PB, Spencer DM, Wooden D, editors. The biology and expertise of the cultivated mushroom. Chichester, UK: John Wiley & Sons, Ltd; 1985. p. 81–109.

  • Straatsma G, Samson RA, Olijnsma TW, Op den Camp HJM, Gerrits JPG, Griensven LJLDV. Ecology of thermophilic fungi in mushroom compost, with emphasis on Scytalidium thermophilum and development stimulation of Agaricus bisporus mycelium. Appl Environ Microbiol. 1994;60:454–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ross RC, Harris PJ. An investigation into the selective nature of mushroom compost. Sci Hortic. 1983;19:55–64.

    Article 

    Google Scholar 

  • Coello-Castillo MM, Sanchez JE, Royse DJ. Manufacturing of Agaricus bisporus on substrates pre-colonized by Scytalidium thermophilum and supplemented at casing with protein-rich dietary supplements. Bioresour Technol. 2009;100:4488–92.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Szekely A, Sipos R, Berta B, Vajna B, Hajdu C, Marialigeti Ok. DGGE and T-RFLP evaluation of bacterial succession throughout mushroom compost manufacturing and sequence-aided T-RFLP profile of mature compost. Microb Ecol. 2009;57:522–33.

    PubMed 
    Article 

    Google Scholar 

  • Kertesz M, Safianowicz Ok, Bell TL. New insights into the microbial communities and organic actions that outline mushroom compost. Sci Cultiv Edible Fungi. 2016;19:161–5.

    Google Scholar 

  • McGee CF, Byrne H, Irvine A, Wilson J. Variety and dynamics of the DNA and cDNA-derived bacterial compost communities all through the Agaricus bisporus mushroom cropping course of. Ann Microbiol. 2017;67:751–61.

    CAS 
    Article 

    Google Scholar 

  • McGee CF, Byrne H, Irvine A, Wilson J. Variety and dynamics of the DNA- and cDNA-derived compost fungal communities all through the industrial cultivation course of for Agaricus bisporus. Mycologia. 2017;109:475–84.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Yeates C, Gillings MR. Fast purification of DNA from soil for molecular biodiversity evaluation. Lett Appl Microbiol. 1998;27:49–53.

    CAS 
    Article 

    Google Scholar 

  • Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al. Extremely-high-throughput microbial neighborhood evaluation on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6:1621–4.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor JW. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a information to strategies and purposes. New York: Educational Press; 1990. p. 315–22.

    Google Scholar 

  • Lever MA, Torti A, Eickenbusch P, Michaud AB, Santl-Temkiv T, Jorgensen BB. A modular methodology for the extraction of DNA and RNA, and the separation of DNA swimming pools from various environmental pattern varieties. Entrance Microbiol. 2015;6:476.

  • Muyzer G, Waal ECD, Uitterlinden AG. Profiling of complicated microbial populations by denaturing gradient gel electrophoresis evaluation of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol. 1993;59:695–700.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. International patterns of 16S rRNA variety at a depth of hundreds of thousands of sequences per pattern. Proc Natl Acad Sci USA. 2011;108:4516–22.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • R Core Workforce. R: a language and setting for statistical computing. Vienna, Austria: R Basis For Statistical Computing; 2019.

  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution pattern inference from Illumina aplicon information. Nat Meth. 2016;13:581–3.

    CAS 
    Article 

    Google Scholar 

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database challenge: improved information processing and web-based instruments. Nucl Acids Res. 2012;41:D590–6.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Schliep KP. phangorn: phylogenetic evaluation in R. Bioinformatics. 2010;27:592–3.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wright ES. Utilizing DECIPHER v2.0 to research large organic sequence information in R. R J. 2016;8:352–9.

    Article 

    Google Scholar 

  • McMurdie PJ, Holmes S. phyloseq: an R bundle for reproducible interactive evaluation and graphics of microbiome census information. PLoS ONE. 2013;8:e61217.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Dixon P. VEGAN, a bundle of R capabilities for neighborhood ecology. J Veget Sci. 2003;14:927–30.

    Article 

    Google Scholar 

  • Wickham H. ggplot2: elegant graphics for information evaluation. New York: Springer; 2016.

  • Sharma HS, Kilpatrick M. Mushroom (Agaricus bisporus) compost high quality components for predicting potential yield of fruiting our bodies. Can J Microbiol. 2000;46:515–9.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Seaby DA. Mushroom (Agaricus bisporus) yield modelling for the bag methodology of mushroom manufacturing utilizing industrial yields and from micro plots. Sci Cultiv Edible Fungi. 1995;14:409–16.

    Google Scholar 

  • O’Donoghue DC. Relationship between some compost components and their results on yield of Agaricus. Mushroom Sci. 1965;6:245–54.

    Google Scholar 

  • Andersen B, Sorensen JL, Nielsen KF, van den Ende BG, de Hoog S. A polyphasic strategy to the taxonomy of the Alternaria infectoria species-group. Fungal Genet Biol. 2009;46:642–56.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • van den Brink J, Samson RA, Hagen F, Boekhout T, de Vries RP. Phylogeny of the commercial related, thermophilic genera Myceliophthora and Corynascus. Fungal Divers. 2012;52:197–207.

    Article 

    Google Scholar 

  • Souza TP, Marques SC, Santos D, Dias ES. Evaluation of thermophilic fungal populations throughout part II of composting for the cultivation of Agaricus subrufescens. World J Microbiol Biotechnol. 2014;30:2419–25.

    PubMed 
    Article 

    Google Scholar 

  • Vajna B, Szili D, Nagy A, Márialigeti Ok. An improved sequence-aided T-RFLP evaluation of bacterial succession throughout oyster mushroom substrate preparation. Microb Ecol. 2012;64:702–13.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Du R, Yan J, Li S, Zhang L, Zhang S, Li J, et al. Cellulosic ethanol manufacturing by pure bacterial consortia is enhanced by Pseudoxanthomonas taiwanensis. Biotechnol Biofuels. 2015;8:10.

  • Kato S, Haruta S, Cui ZJ, Ishii M, Igarashi Y. Steady coexistence of 5 bacterial strains as a cellulose-degrading neighborhood. Appl Environ Microbiol. 2005;71:7099–106.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Haruta S, Cui Z, Huang Z, Li M, Ishii M, Igarashi Y. Building of a secure microbial neighborhood with excessive cellulose-degradation capability. Appl Microbiol Biotechnol. 2002;59:529–34.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Vajna B, Adrienn N, Sajben-Nagy E, Manczinger L, Szijártó N, Kádár Z, et al. Microbial neighborhood construction modifications throughout oyster mushroom substrate preparation. Appl Microbiol Biotechnol. 2010;86:367–75.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Karadag D, Özkaya B, Ölmez E, Nissilä ME, Çakmakçı M, Yıldız Ş, et al. Profiling of bacterial neighborhood in a full-scale cardio composting plant. Int Biodeter Biodeg. 2013;77:85–90.

    CAS 
    Article 

    Google Scholar 

  • Rathinam NK, Gorky, Bibra M, Salem DR, Sani RK. Bioelectrochemical strategy for enhancing lignocellulose degradation and biofilm formation in Geobacillus pressure WSUCF1. Bioresour Technol. 2020;295:122271.

  • Tune TT, Shen YY, Jin QL, Feng WL, Fan LJ, Cao GT, et al. Bacterial neighborhood variety, lignocellulose parts, and histological modifications in composting utilizing agricultural straws for Agaricus bisporus manufacturing. PeerJ. 2021;9:e10452.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zhang X, Zhong Y, Yang S, Zhang W, Xu M, Ma A, et al. Variety and dynamics of the microbial neighborhood on decomposing wheat straw throughout mushroom compost manufacturing. Bioresour Technol. 2014;170:183–95.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Goodfellow M, Maldonado LA, Quintana ET. Reclassification of Nonomuraea flexuosa (Meyer 1989) Zhang et al. 1998 as Thermopolyspora flexuosa gen. nov., comb. nov., nom. rev. Int J Syst Evol Microbiol. 2005;55:1979–83.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lin SB, Stutzenberger FJ. Purification and characterization of the most important beta-1,4-endoglucanase from Thermomonospora curvata. J Appl Bacteriol. 1995;79:447–53.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kukolya J, Nagy I, Láday M, Tóth E, Oravecz O, Márialigeti Ok, et al. Thermobifida cellulolytica sp. nov., a novel lignocellulose-decomposing actinomycete. Int J Syst Evol Microbiol. 2002;52:1193–9.

    CAS 
    PubMed 

    Google Scholar 

  • Weon H-Y, Lee S-Y, Kim B-Y, Noh H-J, Schumann P, Kim J-S, et al. Ureibacillus composti sp. nov. and Ureibacillus thermophilus sp. nov., remoted from livestock-manure composts. Int J Syst Evol Microbiol. 2007;57:2908–11.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Poli A, Laezza G, Gul-Guven R, Orlando P, Nicolaus B. Geobacillus galactosidasius sp. nov., a brand new thermophilic galactosidase-producing bacterium remoted from compost. Syst Appl Microbiol. 2011;34:419–23.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gavande PV, Basak A, Sen S, Lepcha Ok, Murmu N, Rai V, et al. Purposeful characterization of thermotolerant microbial consortium for lignocellulolytic enzymes with central position of Firmicutes in rice straw depolymerization. Sci Rep. 2021;11:3032.

  • Xu JQ, Lu YY, Shan GC, He XS, Huang JH, Li QL. Inoculation with compost-born thermophilic complicated microbial consortium induced natural issues degradation whereas diminished nitrogen loss throughout co-composting of dairy manure and sugarcane leaves. Waste Biomass Valor. 2019;10:2467–77.

    CAS 
    Article 

    Google Scholar 

  • Yoon JH, Kang SJ, Im WT, Lee ST, Oh TK. Chelatococcus daeguensis sp nov., remoted from wastewater of a textile dye works, and emended description of the genus Chelatococcus. Int J Syst Evol Microbiol. 2008;58:2224–8.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zhou C, Liu Z, Huang Z-L, Dong M, Yu X-L, Ning P. A brand new technique for co-composting dairy manure with rice straw: addition of various inocula at three levels of composting. Waste Handle. 2015;40:38–43.

    CAS 
    Article 

    Google Scholar 

  • Gómez A. New expertise in Agaricus bisporus cultivation. In: Zied DC, Pardo-Giménez A, editors. Edible and medicinal mushrooms. Chichester, UK: John Wiley & Sons; 2017. p. 211–20.

  • von Minnigerode HF, editor. Methodology for controlling and regulating the composting course of. Proceedings of the Eleventh Worldwide Scientific Congress on the Cultivation of Edible Fungi. Sydney, Australia: The Worldwide Society for Mushroom Science; 1981.

  • Jurak E, Gruppen H, Kabel MA, Eggink G, Meyer AS, van der Maarel MJEC, et al. How mushrooms feed on compost: conversion of carbohydrates and lignin in industrial wheat straw primarily based compost enabling the expansion of Agaricus bisporus. Wageningen College—Graduate College VLAG; 2015.

  • Miller FC, Macauley BJ, Harper ER. Investigation of assorted gases, pH and redox potential in mushroom composting Part-I stacks. Aust J Exper Agric. 1991;31:415–25.

    Article 

    Google Scholar 

  • Miller FC, Harper ER, Macauley BJ, Gulliver A. Composting primarily based on reasonably thermophilic and cardio situations for the manufacturing of business rising compost. Aust J Exper Agric. 1990;30:287–96.

    Article 

    Google Scholar 

  • Carrasco J, Preston GM. Rising edible mushrooms: a dialog between micro organism and fungi. Environ Microbiol. 2020;22:858–72.

    PubMed 
    Article 

    Google Scholar 

  • Facebook
    Twitter
    Pinterest
    WhatsApp
    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments