Wednesday, September 28, 2022
HomeBiotechnologyDesign, development and in vivo practical evaluation of a hinge truncated sFLT01

Design, development and in vivo practical evaluation of a hinge truncated sFLT01

Facebook
Twitter
Pinterest
WhatsApp

  • de Jong EK, Geerlings MJ, den Hollander AI. Age-related macular degeneration. Genetics and Genomics of Eye Illness: MA, USA: Elsevier; Tutorial Press, 2020. p. 155–80.

  • Simons M, Gordon E, Claesson-Welsh L. Mechanisms and regulation of endothelial VEGF receptor signalling. Nat Rev Mol Cell Biol. 2016;17:611–25.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L. VEGF receptor signalling – accountable for vascular perform. Nat Rev Mol Cell Biol. 2006;7:359–71.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ruiz de Almodovar C, Lambrechts D, Mazzone M, Carmeliet P. Position and therapeutic potential of VEGF within the nervous system. Physiol Rev. 2009;89:607–48.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Falavarjani KG, Nguyen QJE. Antagonistic occasions and issues related to intravitreal injection of anti-VEGF brokers: a assessment of literature. Eye (Lond). 2013;27:787–94.

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Bakri SJ, Thorne JE, Ho AC, Ehlers JP, Schoenberger SD, Yeh S, et al. Security and efficacy of anti-vascular endothelial development issue therapies for neovascular age-related macular degeneration: a report by the american academy of ophthalmology. Ophthalmology. 2019;126:55–63.

    PubMed 
    Article 

    Google Scholar 

  • Meyer CH, Michels S, Rodrigues EB, Hager A, Mennel S, Schmidt JC, et al. Incidence of rhegmatogenous retinal detachments after intravitreal antivascular endothelial issue injections. Acta Ophthalmol. 2011;89:70–5.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ladas ID, Karagiannis DA, Rouvas AA, Kotsolis AI, Liotsou A, Vergados IJR. Security of repeat intravitreal injections of bevacizumab versus ranibizumab: our expertise after 2000 injections. Retina. 2009;29:313–8.

    PubMed 
    Article 

    Google Scholar 

  • Tolentino MJSoo. Systemic and ocular security of intravitreal anti-VEGF therapies for ocular neovascular illness. Surv Ophthalmol. 2011;56:95–113.

    Article 

    Google Scholar 

  • Colella P, Ronzitti G, Mingozzi F. Rising points in AAV-mediated in vivo gene remedy. Mol Ther Strategies Clin Dev. 2018;8:87–104.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Guimaraes TAC, Georgiou M, Bainbridge JWB, Michaelides M. Gene remedy for neovascular age-related macular degeneration: rationale, medical trials and future instructions. Br J Ophthalmol. 2021;105:151–7.

    PubMed 
    Article 

    Google Scholar 

  • Arepalli S, Kaiser PK. Pipeline therapies for neovascular age associated macular degeneration. Int J Retina Vitreous. 2021;7:55.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Pecen PE, Kaiser PK. Present part 1/2 analysis for neovascular age-related macular degeneration. Curr Opin Ophthalmol. 2015;26:188–93.

    PubMed 
    Article 

    Google Scholar 

  • He X, Cheng R, Benyajati S, Ma JX. PEDF and its roles in physiological and pathological circumstances: implication in diabetic and hypoxia-induced angiogenic illnesses. Clin Sci (Lond). 2015;128:805–23.

    Article 

    Google Scholar 

  • Rodrigues GA, Shalaev E, Karami TK, Cunningham J, Slater NK, Rivers HM. Pharmaceutical improvement of AAV-based gene remedy merchandise for the attention. Pharm Res. 2019;36:29.

    Article 
    CAS 

    Google Scholar 

  • Naso MF, Tomkowicz B, Perry WL, Strohl WRJB. Adeno-associated virus (AAV) as a vector for gene remedy. BioDrugs. 2017;31:317–34.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Chen HJWJoMG. Adeno-associated virus vectors for human gene remedy. World J Med Genet. 2015;5:28–45.

    Article 

    Google Scholar 

  • Rasmussen H, Chu KW, Campochiaro P, Gehlbach PL, Haller JA, Handa JT, et al. Scientific protocol. An open-label, part I, single administration, dose-escalation examine of ADGVPEDF.11D (ADPEDF) in neovascular age-related macular degeneration (AMD). Hum Gene Ther. 2001;12:2029–32.

    CAS 
    PubMed 

    Google Scholar 

  • Campochiaro PA, Nguyen QD, Shah SM, Klein ML, Holz E, Frank RN, et al. Adenoviral vector-delivered pigment epithelium-derived issue for neovascular age-related macular degeneration: outcomes of a part I medical trial. Hum Gene Ther. 2006;17:167–76.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Rakoczy EP, Lai CM, Magno AL, Wikstrom ME, French MA, Pierce CM, et al. Gene remedy with recombinant adeno-associated vectors for neovascular age-related macular degeneration: 1 yr follow-up of a part 1 randomised medical trial. Lancet. 2015;386:2395–403.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Constable IJ, Pierce CM, Lai CM, Magno AL, Degli-Esposti MA, French MA, et al. Part 2a Randomized Scientific Trial: Security and Publish Hoc Evaluation of Subretinal rAAV.sFLT-1 for Moist Age-related Macular Degeneration. EBioMedicine. 2016;14:168–75.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Campochiaro PA, Lauer AK, Sohn EH, Mir TA, Naylor S, Anderton MC, et al. Lentiviral Vector Gene Switch of Endostatin/Angiostatin for Macular Degeneration (GEM) Research. Hum Gene Ther. 2017;28:99–111.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Binley Ok, Widdowson PS, Kelleher M, de Belin J, Loader J, Ferrige G, et al. Security and biodistribution of an equine infectious anemia virus-based gene remedy, RetinoStat((R)), for age-related macular degeneration. Hum Gene Ther. 2012;23:980–91.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kumar-Singh R. The position of complement membrane assault complicated in dry and moist AMD – From speculation to medical trials. Exp Eye Res. 2019;184:266–77.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cashman SM, Ramo Ok, Kumar-Singh R. A non membrane-targeted human soluble CD59 attenuates choroidal neovascularization in a mannequin of age associated macular degeneration. PLoS ONE. 2011;6:e19078.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Czajkowsky DM, Hu J, Shao Z, Pleass RJ. Fc‐fusion proteins: new developments and future views. EMBO Mol Med. 2012;4:1015–28.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rath T, Baker Ok, Dumont JA, Peters RT, Jiang H, Qiao S-W, et al. Fc-fusion proteins and FcRn: structural insights for longer-lasting and more practical therapeutics. Crit Rev Biotechnol. 2015;35:235–54.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Liu L. Pharmacokinetics of monoclonal antibodies and Fc-fusion proteins. Protein Cell. 2018;9:15–32.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kim HS, Kim I, Zheng L, Vernes J-M, Meng YG, Spiess C, editors. Evading pre-existing anti-hinge antibody binding by hinge engineering. MAbs. 2016;8:1536–47.

  • Huang T, Mathieu M, Lee S, Wang X, Kee YS, Bevers JJ, et al. Molecular characterization of human anti-hinge antibodies derived from single-cell cloning of regular human B cells. J Biol Chem. 2018;293:906–19.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Yan B, Boyd D, Kaschak T, Tsukuda J, Shen A, Lin Y, et al. Engineering higher hinge improves stability and effector perform of a human IgG1. J Biol Chem. 2012;287:5891–7.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Saunders KO. Conceptual Approaches to Modulating Antibody Effector Features and Circulation Half-Life. Entrance Immunol. 2019;10:1296.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • D’Eall C, Pon RA, Rossotti MA, Krahn N, Spearman M, Callaghan D, et al. Modulating antibody‐dependent mobile cytotoxicity of epidermal development issue receptor‐particular heavy‐chain antibodies by hinge engineering. J Immunol. 2019;177:1129–38.

    Google Scholar 

  • Dall’Acqua WF, Prepare dinner KE, Damschroder MM, Woods RM. Wu HJTJoI. Modulation of the effector capabilities of a human IgG1 by engineering of its hinge area. J Immunol. 2006;177:1129–38.

    PubMed 
    Article 

    Google Scholar 

  • Pechan P, Rubin H, Lukason M, Ardinger J, DuFresne E, Hauswirth WW, et al. Novel anti-VEGF chimeric molecules delivered by AAV vectors for inhibition of retinal neovascularization. Gene Ther. 2009;16:10–6.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bagley RG, Kurtzberg L, Weber W, Nguyen T-H, Roth S, Krumbholz R, et al. sFLT01: a novel fusion protein with antiangiogenic exercise. Mol Most cancers Ther. 2011;10:404–15.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Yang S, Zhao J, Solar X. Resistance to anti-VEGF remedy in neovascular age-related macular degeneration: a complete assessment. Drug Des Devel Ther. 2016;10:1857–67.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lukason M, DuFresne E, Rubin H, Pechan P, Li Q, Kim I, et al. Inhibition of choroidal neovascularization in a nonhuman primate mannequin by intravitreal administration of an AAV2 vector expressing a novel anti-VEGF molecule. Mol Ther. 2011;19:260–5.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Heier JS, Kherani S, Desai S, Dugel P, Kaushal S, Cheng SH, et al. Intravitreous injection of AAV2-sFLT01 in sufferers with superior neovascular age-related macular degeneration: a part 1, open-label trial. Lancet. 2017;390:50–61.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wiesmann C, Fuh G, Christinger HW, Eigenbrot C, Wells JA, de Vos AMJC. Crystal construction at 1.7 Å decision of VEGF in complicated with area 2 of the Flt-1 receptor. Cell. 1997;91:695–704.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Davari M, Soheili Z-S, Samiei S, Sharifi Z, Pirmardan ER. Overexpression of miR-183/-96/-182 triggers neuronal cell destiny in Human Retinal Pigment Epithelial (hRPE) cells in tradition. Biochem Biophys Res Commun. 2017;483:745–51.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Šali AJCOiB. Modelling mutations and homologous proteins. Curr Opin Biotechnol. 1995;6:437–51.

    Article 

    Google Scholar 

  • Bagley RG, Kurtzberg L, Weber W, Nguyen TH, Roth S, Krumbholz R, et al. sFLT01: a novel fusion protein with antiangiogenic exercise. Mol Most cancers Ther. 2011;10:404–15.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kingsley LJ, Brunet V, Lelais G, McCloskey S, Milliken Ok, Leija E, et al. Improvement of a digital actuality platform for efficient communication of structural information in drug discovery. J Mol Graph Mannequin. 2019;89:234–41.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Laskowski R, MacArthur M, Thornton J. PROCHECK: validation of protein-structure coordinates. Worldwide Tables for Crystallography. 2012;684–7.

  • Wiederstein M, Sippl MJ. ProSA-web: interactive net service for the popularity of errors in three-dimensional constructions of proteins. Nucleic Acids Res. 2007;35:W407–W10.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sippl MJ. Recognition of errors in three‐dimensional constructions of proteins. Proteins. 1993;17:355–62.

  • Abraham MJ, Murtola T, Schulz R, Pá ll S, Smith JC, Hess B, et al. GROMACS: Excessive efficiency molecular simulations by multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25.

    Article 

    Google Scholar 

  • Bjelkmar P, Larsson P, Cuendet MA, Hess B, Lindahl E. Implementation of the CHARMM Power Area in GROMACS: Evaluation of Protein Stability Results from Correction Maps, Digital Interplay Websites, and Water Fashions. J Chem Principle Comput. 2010;6:459–66.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Berendsen H, Grigera J, Straatsma T. The lacking time period in efficient pair potentials. J Phys Chem. 1987;91:6269–71.

    CAS 
    Article 

    Google Scholar 

  • Hess B. P-LINCS: a parallel linear constraint solver for molecular simulation. J Chem Principle Comput. 2008;4:116–22.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hess B, Bekker H, Berendsen HJ, Fraaije JG. LINCS: a linear constraint solver for molecular simulations. J Comput Chem. 1997;18:1463–72.

    CAS 
    Article 

    Google Scholar 

  • Zambrano R, Jamroz M, Szczasiuk A, Pujols J, Kmiecik S, Ventura S. AGGRESCAN3D (A3D): server for prediction of aggregation properties of protein constructions. Nucleic Acids Res. 2015;43:W306–13.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kuriata A, Iglesias V, Pujols J, Kurcinski M, Kmiecik S, Ventura S. Aggrescan3D (A3D) 2.0: prediction and engineering of protein solubility. Nucleic Acids Res. 2019;47:W300–W7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ali M, Pandey RK, Khatoon N, Narula A, Mishra A, Prajapati VK. Exploring dengue genome to assemble a multi-epitope based mostly subunit vaccine by using immunoinformatics strategy to battle in opposition to dengue an infection. Sci Rep. 2017;7:9232.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Hajighahramani N, Nezafat N, Eslami M, Negahdaripour M, Rahmatabadi SS, Ghasemi Y. Immunoinformatics evaluation and in silico designing of a novel multi-epitope peptide vaccine in opposition to Staphylococcus aureus. Infect Genet Evol. 2017;48:83–94.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Solanki V, Tiwari V. Subtractive proteomics to establish novel drug targets and reverse vaccinology for the event of chimeric vaccine in opposition to Acinetobacter baumannii. Sci Rep. 2018;8:9044.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Saadi M, Karkhah A, Nouri HR. Improvement of a multi-epitope peptide vaccine inducing strong T cell responses in opposition to brucellosis utilizing immunoinformatics based mostly approaches. Infect Genet Evol. 2017;51:227–34.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Meza B, Ascencio F, Sierra-Beltran AP, Torres J, Angulo C. A novel design of a multi-antigenic, multistage and multi-epitope vaccine in opposition to Helicobacter pylori: an in silico strategy. Infect Genet Evol. 2017;49:309–17.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chauhan V, Rungta T, Goyal Ok, Singh MP. Designing a multi-epitope based mostly vaccine to fight Kaposi Sarcoma using immunoinformatics strategy. Sci Rep. 2019;9:2517.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Rana A, Akhter Y. A multi-subunit based mostly, thermodynamically secure mannequin vaccine utilizing mixed immunoinformatics and protein construction based mostly strategy. Immunobiology. 2016;221:544–57.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dhanda SK, Usmani SS, Agrawal P, Nagpal G, Gautam A, Raghava GPS. Novel in silico instruments for designing peptide-based subunit vaccines and immunotherapeutics. Temporary Bioinform. 2017;18:467–78.

    CAS 
    PubMed 

    Google Scholar 

  • Bhatnager R, Bhasin M, Arora J, Dang AS. Epitope based mostly peptide vaccine in opposition to SARS-COV2: an immune-informatics strategy. J Biomol Struct Dyn. 2021;39:5690–705.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Alam A, Khan A, Imam N, Siddiqui MF, Waseem M, Malik MZ, et al. Design of an epitope-based peptide vaccine in opposition to the SARS-CoV-2: a vaccine-informatics strategy. Temporary Bioinform. 2021;22:1309–23.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Scussel R, Feuser PE, Luiz GP, Galvani NC, Fagundes MI, Goncalves Dal-Bo A, et al. Peptide-Built-in Superparamagnetic Nanoparticles for the Identification of Epitopes from SARS-CoV-2 Spike and Nucleocapsid Proteins. ACS Appl Nano Mater. 2022;5:642–53.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Shah I, Jamil S, Rehmat S, Butt HA, Ali SS, Idrees M, et al. Analysis and identification of important therapeutic proteins and vaccinomics strategy in direction of multi-epitopes vaccine designing in opposition to Legionella pneumophila for immune response instigation. Comput Biol Med. 2022;143:105291.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ojha R, Gurjar Ok, Ratnakar TS, Mishra A, Prajapati VK. Designing of a bispecific antibody in opposition to SARS-CoV-2 spike glycoprotein concentrating on human entry receptors DPP4 and ACE2. Hum Immunol. 2022;83:346–55.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ismail S, Waheed Y, Ahmad S, Ahsan O, Abbasi SW, Sadia Ok. An in silico examine to unveil potential medicine and vaccine chimera for HBV capsid meeting protein: mixed molecular docking and dynamics simulation strategy. J Mol Mannequin. 2022;28:51.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Khan A, Khan S, Saleem S, Nizam-Uddin N, Mohammad A, Khan T, et al. Immunogenomics guided design of immunomodulatory multi-epitope subunit vaccine in opposition to the SARS-CoV-2 new variants, and its validation by in silico cloning and immune simulation. Comput Biol Med. 2021;133:104420.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Saha S, Raghava GPS. AlgPred: prediction of allergenic proteins and mapping of IgE epitopes. Nucleic Acids Res. 2006;34:W202–W9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Saha CK, Mahbub Hasan M, Saddam Hossain M, Asraful Jahan M, Azad AK. In silico identification and characterization of widespread epitope-based peptide vaccine for Nipah and Hendra viruses. Asian Pac J Trop Med. 2017;10:529–38.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Nguyen TL, Lee Y, Kim H. Immunogenic Epitope-Based mostly Vaccine Prediction from Floor Glycoprotein of MERS-CoV by Deploying Immunoinformatics Method. Int J Pept Res Ther. 2022;28:77.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Yazdani Z, Rafiei A, Valadan R, Ashrafi H, Pasandi M, Kardan M. Designing a potent L1 protein-based HPV peptide vaccine: a bioinformatics strategy. Comput Biol Chem. 2020;85:107209.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ghosh P, Bhakta S, Bhattacharya M, Sharma AR, Sharma G, Lee SS, et al. A Novel Multi-Epitopic Peptide Vaccine Candidate In opposition to Helicobacter pylori: In-Silico Identification, Design, Cloning and Validation By Molecular Dynamics. Int J Pept Res Ther. 2021;27:1149–66.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Naqvi STQ, Yasmeen M, Ismail M, Muhammad SA, Nawazish IHS, Ali A, et al. Designing of Potential Polyvalent Vaccine Mannequin for Respiratory Syncytial Virus by System Degree Immunoinformatics Approaches. Biomed Res Int. 2021;2021:9940010.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Selvaraj G, Kaliamurthi S, Peslherbe GH, Wei DQ. Are the Allergic Reactions of COVID-19 Vaccines Attributable to mRNA Constructs or Nanocarriers? Immunological Insights. Interdiscip Sci. 2021;13:344–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ashik AI, Hasan M, Tasnim AT, Chowdhury MB, Hossain T, Ahmed S. An immunoinformatics examine on the spike protein of SARS-CoV-2 revealing potential epitopes as vaccine candidates. Heliyon. 2020;6:e04865.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Abd Albagi SO, Al-Nour MY, Elhag M, Tageldein Idris Abdelihalim A, Musa Haroun E, Adam, Essa ME, et al. A a number of peptides vaccine in opposition to COVID-19 designed from the nucleocapsid phosphoprotein (N) and Spike Glycoprotein (S) by way of the immunoinformatics strategy. Inform Med Unlocked. 2020;21:100476.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sharma S, Solanki V, Tiwari V. Reverse vaccinology strategy to design a vaccine concentrating on membrane lipoproteins of Salmonella typhi. J Biomol Struct Dyn. 2021:1–16.

  • Dimitrov I, Naneva L, Doytchinova I, Bangov I. AllergenFP: allergenicity prediction by descriptor fingerprints. Bioinformatics. 2014;30:846–51.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Abraham Peele Ok, Srihansa T, Krupanidhi S, Ayyagari VS, Venkateswarulu TC. Design of multi-epitope vaccine candidate in opposition to SARS-CoV-2: a in-silico examine. J Biomol Struct Dyn. 2021;39:3793–801.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Soltan MA, Elbassiouny N, Gamal H, Elkaeed EB, Eid RA, Eldeen MA, et al. In Silico Prediction of a Multitope Vaccine in opposition to Moraxella catarrhalis: Reverse Vaccinology and Immunoinformatics. Vaccines (Basel). 2021;9:1–13.

    Google Scholar 

  • Sanami S, Zandi M, Pourhossein B, Mobini GR, Safaei M, Abed A, et al. Design of a multi-epitope vaccine in opposition to SARS-CoV-2 utilizing immunoinformatics strategy. Int J Biol Macromol. 2020;164:871–83.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Halimatul Munawaroh HS, Gumilar GG, Berliana JD, Aisyah S, Nuraini VA, Ningrum A, et al. In silico proteolysis and molecular interplay of tilapia (Oreochromis niloticus) pores and skin collagen-derived peptides for environmental remediation. Environ Res. 2022:113002.

  • Rahmat Ullah S, Majid M, Rashid MI, Mehmood Ok, Andleeb S. Immunoinformatics Pushed Prediction of Multiepitopic Vaccine In opposition to Klebsiella pneumoniae and Mycobacterium tuberculosis Coinfection and Its Validation by way of In Silico Expression. Int J Pept Res Ther. 2021;27:987–99.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Singh A, Thakur M, Sharma LK, Chandra Ok. Designing a multi-epitope peptide based mostly vaccine in opposition to SARS-CoV-2. Sci Rep. 2020;10:16219.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Adhikari UK, Tayebi M, Rahman MM. Immunoinformatics Method for Epitope-Based mostly Peptide Vaccine Design and Lively Web site Prediction in opposition to Polyprotein of Rising Oropouche Virus. J Immunol Res. 2018;2018:6718083.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Zhou F, He S, Zhang Y, Wang Y, Solar H, Liu Q. Prediction and characterization of the T cell epitopes for the main soybean protein allergens utilizing bioinformatics approaches. Proteins. 2022;90:418–34.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dimitrov I, Bangov I, Flower DR, Doytchinova I. AllerTOP v.2–a server for in silico prediction of allergens. J Mol Mannequin. 2014;20:2278.

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Venkatarajan MS, Braun W. New quantitative descriptors of amino acids based mostly on multidimensional scaling of numerous bodily–chemical properties. Mol Modeling Ann. 2001;7:445–53.

    CAS 
    Article 

    Google Scholar 

  • Nyström Å, Andersson PM, Lundstedt T. Multivariate information evaluation of topographically modified α‐melanotropin analogues utilizing auto and cross auto covariances (ACC). Quant Construction‐Exercise Relation. 2000;19:264–9.

    Article 

    Google Scholar 

  • Dimitrov I, Bangov I, Flower DR, Doytchinova I. AllerTOP v. 2—a server for in silico prediction of allergens. J Mol Modeling. 2014;20:1–6.

    CAS 
    Article 

    Google Scholar 

  • Dimitrov I, Flower DR, Doytchinova I, editors. AllerTOP-a server for in silico prediction of allergens. BMC Bioinforma. 2013;14:1–9.

  • Lapinsh M, Gutcaits A, Prusis P, Publish C, Lundstedt T, Wikberg JE. Classification of G‐protein coupled receptors by alignment‐impartial extraction of principal chemical properties of major amino acid sequences. Protein Sc. 2002;11:795–805.

    CAS 
    Article 

    Google Scholar 

  • Dehghani B, Hashempour T, Hasanshahi Z. Utilizing immunoinformatics and structural approaches to design a novel HHV8 vaccine. Int J Peptide Res Ther. 2020;26:321–31.

    CAS 
    Article 

    Google Scholar 

  • Yazdani Z, Rafiei A, Valadan R, Ashrafi H, Pasandi M, Kardan M. Designing a potent L1 protein-based HPV peptide vaccine: a bioinformatics strategy. Comput Biol Chem. 2020;85:107209.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Nguyen TL, Lee Y, Kim H. Immunogenic Epitope-Based mostly Vaccine Prediction from Floor Glycoprotein of MERS-CoV by Deploying Immunoinformatics Method. Int J Peptide Res Ther. 2022;28:1–11.

    Article 
    CAS 

    Google Scholar 

  • Doytchinova IA, Flower DR. VaxiJen: a server for prediction of protecting antigens, tumour antigens and subunit vaccines. BMC Bioinform. 2007;8:4.

    Article 
    CAS 

    Google Scholar 

  • Jyotisha, Singh S, Qureshi IA. Multi-epitope vaccine in opposition to SARS-CoV-2 making use of immunoinformatics and molecular dynamics simulation approaches. J Biomol Struct Dyn. 2020:1–17.

  • Karagoz IK, Munk MR, Kaya M, Ruckert R, Yildirim M, Karabas L. Utilizing bioinformatic protein sequence similarity to analyze if SARS CoV-2 an infection might trigger an ocular autoimmune inflammatory reactions? Exp Eye Res. 2021;203:108433.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Yadav S, Prakash J, Shukla H, Das KC, Tripathi T, Dubey VK. Design of a multi-epitope subunit vaccine for immune-protection in opposition to Leishmania parasite. Pathogens International Well being. 2020;114:471–81.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kumar Pandey R, Ojha R, Mishra A, Kumar, Prajapati V. Designing B‐and T‐cell multi‐epitope based mostly subunit vaccine utilizing immunoinformatics strategy to manage Zika virus an infection. J Cell Biochem. 2018;119:7631–42.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dey J, Mahapatra SR, Patnaik S, Lata S, Kushwaha GS, Panda RK, et al. Molecular Characterization and Designing of a Novel Multiepitope Vaccine Assemble In opposition to Pseudomonas aeruginosa. Int J Peptide Res Ther. 2022;28:1–19.

    Article 
    CAS 

    Google Scholar 

  • Yukeswaran L, Shreeranjana S, Subhashini T. Immunoinformatics Aided Multi-epitope Based mostly Vaccine Design In opposition to Crimean-Congo Virus. AIJR Abstracts. 2021:43.

  • Oprea M, Antohe F. Reverse-vaccinology technique for designing T-cell epitope candidates for Staphylococcus aureus endocarditis vaccine. Biologicals. 2013;41:148–53.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kalita P, Padhi AK, Zhang KY, Tripathi T. Design of a peptide-based subunit vaccine in opposition to novel coronavirus SARS-CoV-2. Microbial Pathogenesis. 2020;145:104236.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ponomarenko J, Bui HH, Li W, Fusseder N, Bourne PE, Sette A, et al. ElliPro: a brand new structure-based device for the prediction of antibody epitopes. BMC Bioinform. 2008;9:514.

    Article 
    CAS 

    Google Scholar 

  • Bhasin M, Raghava GP. Prediction of CTL epitopes utilizing QM, SVM and ANN strategies. Vaccine. 2004;22:3195–204.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Morris JH, Huang CC, Babbitt PC, Ferrin TE. structureViz: linking Cytoscape and UCSF Chimera. Bioinformatics. 2007;23:2345–7.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Doncheva NT, Klein Ok, Domingues FS, Albrecht M. Analyzing and visualizing residue networks of protein constructions. Tendencies Biochem Sci. 2011;36:179–82.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Brysbaert G, Lorgouilloux Ok, Vranken WF, Lensink MF. RINspector: a Cytoscape app for centrality analyses and DynaMine flexibility prediction. Bioinformatics. 2018;34:294–6.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Amitai G, Shemesh A, Sitbon E, Shklar M, Netanely D, Venger I, et al. Community evaluation of protein constructions identifies practical residues. J Mol Biol. 2004;344:1135–46.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Brysbaert G, Mauri T, Lensink MF. Evaluating protein constructions with RINspector automation in Cytoscape. F1000Res. 2018;7:563.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Kay P, Yang YC, Paraoan L. Directional protein secretion by the retinal pigment epithelium: roles in retinal well being and the event of age‐associated macular degeneration. J Cell Mol Med. 2013;17:833–43.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Pirmardan ER, Soheili Z-S, Samiei S, Ahmadieh H, Mowla SJ, Naseri M, et al. In Vivo Analysis of PAX6 Overexpression and NMDA Cytotoxicity to Stimulate Proliferation within the Mouse Retina. Sci Rep. 2018;8:17700.

    Article 
    CAS 

    Google Scholar 

  • DeCicco-Skinner KL, Henry GH, Cataisson C, Tabib T, Gwilliam JC, Watson NJ, et al. Endothelial cell tube formation assay for the in vitro examine of angiogenesis. J Vis Exp. 2014;91:e51312.

    Google Scholar 

  • Faibish M, Shao RJ, Jove J. A Matrigel-based tube formation assay to evaluate the vasculogenic exercise of tumor cells. J Vis Exp. 2011;55:1–4.

    Google Scholar 

  • Arnaoutova I, George J, Kleinman HK, Benton GJA. The endothelial cell tube formation assay on basement membrane turns 20: state of the science and the artwork. Angiogenesis. 2009;12:267–74.

    PubMed 
    Article 

    Google Scholar 

  • Fruttiger M. Improvement of the mouse retinal vasculature: angiogenesis versus vasculogenesis. Make investments Ophthalmol Vis Sci. 2002;43:522–7.

  • Brown AS, Zhang M, Cucevic V, Pavlin CJ, Foster FS. In vivo evaluation of postnatal murine ocular improvement by ultrasound biomicroscopy. Curr Eye Res. 2005;30:45–51.

    PubMed 
    Article 

    Google Scholar 

  • Kowalczuk L, Touchard E, Omri S, Jonet L, Klein C, Valamanes F, et al. Placental development issue contributes to micro-vascular abnormalization and blood-retinal barrier breakdown in diabetic retinopathy. PLoS One. 2011;6:e17462.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sandin S, Ofverstedt LG, Wikstrom AC, Wrange O, Skoglund U. Construction and suppleness of particular person immunoglobulin G molecules in answer. Construction. 2004;12:409–15.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Saphire EO, Stanfield RL, Crispin MD, Parren PW, Rudd PM, Dwek RA, et al. Contrasting IgG constructions reveal excessive asymmetry and suppleness. J Mol Biol. 2002;319:9–18.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chiu ML, Goulet DR, Teplyakov A, Gilliland GL. Antibody Construction and Operate: The Foundation for Engineering Therapeutics. Antibodies (Basel). 2019;8:1–80.

    Google Scholar 

  • Moritz B, Stracke JO. Evaluation of disulfide and hinge modifications in monoclonal antibodies. Electrophoresis. 2017;38:769–85.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Reibaldi M, Pulvirenti A, Avitabile T, Bonfiglio V, Russo A, Mariotti C, et al. Pooled Estimates of Incidence of Endophthalmitis after Intravitreal Injection of Anti-Vascular Endothelial Progress Issue Brokers with and with out Topical Antibiotic Prophylaxis. Retina. 2018;38:1–11.

    PubMed 
    Article 

    Google Scholar 

  • Rosenfeld PJ, Brown DM, Heier JS, Boyer DS, Kaiser PK, Chung CY, et al. Ranibizumab for neovascular age-related macular degeneration. N Engl J Med. 2006;355:1419–31.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bhavsar AR, Googe JM Jr. Stockdale CR, Bressler NM, Brucker AJ, Elman MJ, et al. Threat of endophthalmitis after intravitreal drug injection when topical antibiotics should not required: the diabetic retinopathy medical analysis community laser-ranibizumab-triamcinolone medical trials. Arch Ophthalmol. 2009;127:1581–3.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bhatt SS, Stepien KE, Joshi Ok. Prophylactic antibiotic use after intravitreal injection: impact on endophthalmitis fee. Retina. 2011;31:2032–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bhavsar AR, Ip MS, Glassman AR. Drcrnet, the SSG. The danger of endophthalmitis following intravitreal triamcinolone injection within the DRCRnet and SCORE medical trials. Am J Ophthalmol. 2007;144:454–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kim SJ, Toma HS. Antimicrobial resistance and ophthalmic antibiotics: 1-year outcomes of a longitudinal managed examine of sufferers present process intravitreal injections. Arch Ophthalmol. 2011;129:1180–8.

    PubMed 
    Article 

    Google Scholar 

  • Milder E, Vander J, Shah C, Garg S. Adjustments in antibiotic resistance patterns of conjunctival flora resulting from repeated use of topical antibiotics after intravitreal injection. Ophthalmology. 2012;119:1420–4.

    PubMed 
    Article 

    Google Scholar 

  • Cheung CS, Wong AW, Lui A, Kertes PJ, Devenyi RG, Lam WC. Incidence of endophthalmitis and use of antibiotic prophylaxis after intravitreal injections. Ophthalmology. 2012;119:1609–14.

    PubMed 
    Article 

    Google Scholar 

  • Dall’Acqua WF, Prepare dinner KE, Damschroder MM, Woods RM, Wu H. Modulation of the effector capabilities of a human IgG1 by engineering of its hinge area. J Immunol. 2006;177:1129–38.

    PubMed 
    Article 

    Google Scholar 

  • Valeich J, Boyd D, Kanwar M, Stenzel D, De Ghosh D, Ebrahimi A, et al. Taking the Hinge off: An Method to Effector-Much less Monoclonal Antibodies. Antibodies (Basel). 2020;9:1–14.

    Article 
    CAS 

    Google Scholar 

  • Stewart MW. The increasing position of vascular endothelial development issue inhibitors in ophthalmology. Mayo Clin Proc. 2012;87:77–88.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Stewart MW, Grippon S, Kirkpatrick P. Aflibercept. Nat Rev Drug Discov. 2012;11:269–70.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • He J, Wang H, Liu Y, Li W, Kim D, Huang H. Blockade of vascular endothelial development issue receptor 1 prevents irritation and vascular leakage in diabetic retinopathy. J Ophthalmol. 2015;2015:605946.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Van Bergen T, Hu TT, Etienne I, Reyns GE, Moons L, Feyen JHM. Neutralization of placental development issue as a novel remedy possibility in diabetic retinopathy. Exp Eye Res. 2017;165:136–50.

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Jiang B, Xu S, Hou X, Pimentel DR, Brecher P, Cohen RA. Temporal management of NF-kappaB activation by ERK differentially regulates interleukin-1beta-induced gene expression. J Biol Chem. 2004;279:1323–9.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bonfiglio V, Platania CBM, Lazzara F, Conti F, Pizzo C, Reibaldi M, et al. TGF-beta Serum Ranges in Diabetic Retinopathy Sufferers and the Position of Anti-VEGF Remedy. Int J Mol Sci. 2020;21:1–16.

    Article 
    CAS 

    Google Scholar 

  • Tokunaga CC, Mitton KP, Dailey W, Massoll C, Roumayah Ok, Guzman E, et al. Results of anti-VEGF remedy on the restoration of the creating retina following oxygen-induced retinopathy. Investig Ophthalmol Vis Sci. 2014;55:1884–92.

    CAS 
    Article 

    Google Scholar 

  • Dolar-Szczasny J, Bucolo C, Zweifel S, Carnevali A, Rejdak R, Zaluska W, et al. Analysis of Aqueous Flare Depth in Eyes Present process Intravitreal Bevacizumab Remedy to Deal with Neovascular Age-Associated Macular Degeneration. Entrance Pharmacol. 2021;12:656774.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Montemagno C, Pages G. Resistance to Anti-angiogenic Therapies: A Mechanism Relying on the Time of Publicity to the Medication. Entrance Cell Dev Biol. 2020;8:584.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gacche RN, Assaraf YG. Redundant angiogenic signaling and tumor drug resistance. Drug Resist Updat. 2018;36:47–76.

    PubMed 
    Article 

    Google Scholar 

  • Latifi-Navid H, Soheili ZS, Samiei S, Sadeghi M, Taghizadeh S, Pirmardan ER, et al. Community evaluation and the impression of Aflibercept on particular mediators of angiogenesis in HUVEC cells. J Cell Mol Med. 2021;25:8285–99.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rezzola S, Loda A, Corsini M, Semeraro F, Annese T, Presta M, et al. Angiogenesis-Irritation Cross Discuss in Diabetic Retinopathy: Novel Insights From the Chick Embryo Chorioallantoic Membrane/Human Vitreous Platform. Entrance Immunol. 2020;11:581288.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Haibe Y, Kreidieh M, El Hajj H, Khalifeh I, Mukherji D, Temraz S, et al. Resistance Mechanisms to Anti-angiogenic Therapies in Most cancers. Entrance Oncol. 2020;10:221.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lazzara F, Fidilio A, Platania CBM, Giurdanella G, Salomone S, Leggio GM, et al. Aflibercept regulates retinal irritation elicited by excessive glucose by way of the PlGF/ERK pathway. Biochem Pharmacol. 2019;168:341–51.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Winterhoff B, Konecny GE. Concentrating on fibroblast development issue pathways in endometrial most cancers. Curr Probl Most cancers. 2017;41:37–47.

    PubMed 
    Article 

    Google Scholar 

  • Chae YK, Ranganath Ok, Hammerman PS, Vaklavas C, Mohindra N, Kalyan A, et al. Inhibition of the fibroblast development issue receptor (FGFR) pathway: the present panorama and limitations to medical software. Oncotarget. 2017;8:16052–74.

    PubMed 
    Article 

    Google Scholar 

  • Turner N, Grose R. Fibroblast development issue signalling: from improvement to most cancers. Nat Rev Most cancers. 2010;10:116–29.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Larrieu-Lahargue F, Welm AL, Bouchecareilh M, Alitalo Ok, Li DY, Bikfalvi A, et al. Blocking Fibroblast Progress Issue receptor signaling inhibits tumor development, lymphangiogenesis, and metastasis. PLoS ONE. 2012;7:e39540.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Brzozowa M, Wojnicz R, Kowalczyk-Ziomek G, Helewski Ok. The Notch ligand Delta-like 4 (DLL4) as a goal in angiogenesis-based most cancers remedy? Contemp Oncol (Pozn). 2013;17:234–7.

    CAS 

    Google Scholar 

  • Li JL, Sainson RC, Oon CE, Turley H, Leek R, Sheldon H, et al. DLL4-Notch signaling mediates tumor resistance to anti-VEGF remedy in vivo. Most cancers Res. 2011;71:6073–83.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Oon CE, Bridges E, Sheldon H, Sainson RCA, Jubb A, Turley H, et al. Position of Delta-like 4 in Jagged1-induced tumour angiogenesis and tumour development. Oncotarget. 2017;8:40115–31.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Garajova I, Giovannetti E, Biasco G, Peters GJ. c-Met as a Goal for Customized Remedy. Transl Oncogenom. 2015;7:13–31.

    Google Scholar 

  • Razzak M. Focused therapies: hepatocyte development factor-a perpetrator of drug resistance. Nat Rev Clin Oncol. 2012;9:429.

    PubMed 
    Article 

    Google Scholar 

  • Nakagawa T, Matsushima T, Kawano S, Nakazawa Y, Kato Y, Adachi Y, et al. Lenvatinib together with golvatinib overcomes hepatocyte development issue pathway-induced resistance to vascular endothelial development issue receptor inhibitor. Most cancers Sci. 2014;105:723–30.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zhou L, Liu XD, Solar M, Zhang X, German P, Bai S, et al. Concentrating on MET and AXL overcomes resistance to sunitinib remedy in renal cell carcinoma. Oncogene. 2016;35:2687–97.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cascone T, Xu L, Lin HY, Liu W, Tran HT, Liu Y, et al. The HGF/c-MET Pathway Is a Driver and Biomarker of VEGFR-inhibitor Resistance and Vascular Reworking in Non-Small Cell Lung Most cancers. Clin Most cancers Res. 2017;23:5489–501.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Chen W, Wu J, Shi H, Wang Z, Zhang G, Cao Y, et al. Hepatic stellate cell coculture allows sorafenib resistance in Huh7 cells by HGF/c-Met/Akt and Jak2/Stat3 pathways. Biomed Res Int. 2014;2014:764981.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Shojaei F, Lee JH, Simmons BH, Wong A, Esparza CO, Plumlee PA, et al. HGF/c-Met acts instead angiogenic pathway in sunitinib-resistant tumors. Most cancers Res. 2010;70:10090–100.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Scholz A, Harter PN, Cremer S, Yalcin BH, Gurnik S, Yamaji M, et al. Endothelial cell-derived angiopoietin-2 is a therapeutic goal in treatment-naive and bevacizumab-resistant glioblastoma. EMBO Mol Med. 2016;8:39–57.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Karlan BY, Oza AM, Richardson GE, Provencher DM, Hansen VL, Buck M, et al. Randomized, double-blind, placebo-controlled part II examine of AMG 386 mixed with weekly paclitaxel in sufferers with recurrent ovarian most cancers. J Clin Oncol. 2012;30:362–71.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mazzieri R, Pucci F, Moi D, Zonari E, Ranghetti A, Berti A, et al. Concentrating on the ANG2/TIE2 axis inhibits tumor development and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells. Most cancers Cell. 2011;19:512–26.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cumpanas AA, Cimpean AM, Ferician O, Ceausu RA, Sarb S, Barbos V, et al. The Involvement of PDGF-B/PDGFRbeta Axis within the Resistance to Antiangiogenic and Antivascular Remedy in Renal Most cancers. Anticancer Res. 2016;36:2291–5.

    CAS 
    PubMed 

    Google Scholar 

  • Ishii Y, Hamashima T, Yamamoto S, Sasahara M. Pathogenetic significance and chance as a therapeutic goal of platelet derived development issue. Pathol Int. 2017;67:235–46.

    PubMed 
    Article 

    Google Scholar 

  • Demoulin JB, Essaghir A. PDGF receptor signaling networks in regular and most cancers cells. Cytokine Progress Issue Rev. 2014;25:273–83.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Appelmann I, Liersch R, Kessler T, Mesters RM, Berdel WE. Angiogenesis inhibition in most cancers remedy: platelet-derived development issue (PDGF) and vascular endothelial development issue (VEGF) and their receptors: organic capabilities and position in malignancy. Current Outcomes Most cancers Res. 2010;180:51–81.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dmitrieva OS, Shilovskiy IP, Khaitov MR, Grivennikov SI. Interleukins 1 and 6 as Primary Mediators of Irritation and Most cancers. Biochemistry (Mosc). 2016;81:80–90.

    CAS 
    Article 

    Google Scholar 

  • Chung AS, Wu X, Zhuang G, Ngu H, Kasman I, Zhang J, et al. An interleukin-17-mediated paracrine community promotes tumor resistance to anti-angiogenic remedy. Nat Med. 2013;19:1114–23.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Huang D, Ding Y, Zhou M, Rini BI, Petillo D, Qian CN, et al. Interleukin-8 mediates resistance to antiangiogenic agent sunitinib in renal cell carcinoma. Most cancers Res. 2010;70:1063–71.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Del Vecchio M, Bajetta E, Canova S, Lotze MT, Wesa A, Parmiani G, et al. Interleukin-12: organic properties and medical software. Clin Most cancers Res. 2007;13:4677–85.

    PubMed 
    Article 

    Google Scholar 

  • Yang B, Kang H, Fung A, Zhao H, Wang T, Ma D. The position of interleukin 17 in tumour proliferation, angiogenesis, and metastasis. Mediators Inflamm. 2014;2014:623759.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Xi HQ, Wu XS, Wei B, Chen L. Eph receptors and ephrins as targets for most cancers remedy. J Cell Mol Med. 2012;16:2894–909.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sawamiphak S, Seidel S, Essmann CL, Wilkinson GA, Pitulescu ME, Acker T, et al. Ephrin-B2 regulates VEGFR2 perform in developmental and tumour angiogenesis. Nature. 2010;465:487–91.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Depner C, Zum Buttel H, Bogurcu N, Cuesta AM, Aburto MR, Seidel S, et al. EphrinB2 repression by ZEB2 mediates tumour invasion and anti-angiogenic resistance. Nat Commun. 2016;7:12329.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Cunha SI, Pietras Ok. ALK1 as an rising goal for antiangiogenic remedy of most cancers. Blood. 2011;117:6999–7006.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • de Vinuesa AG, Bocci M, Pietras Ok, Ten Dijke P. Concentrating on tumour vasculature by inhibiting activin receptor-like kinase (ALK)1 perform. Biochem Soc Trans. 2016;44:1142–9.

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Hu-Lowe DD, Chen E, Zhang L, Watson KD, Mancuso P, Lappin P, et al. Concentrating on activin receptor-like kinase 1 inhibits angiogenesis and tumorigenesis by a mechanism of motion complementary to anti-VEGF therapies. Most cancers Res. 2011;71:1362–73.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gore AV, Swift MR, Cha YR, Lo B, McKinney MC, Li W, et al. Rspo1/Wnt signaling promotes angiogenesis by way of Vegfc/Vegfr3. Improvement. 2011;138:4875–86.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Pereira C, Schaer DJ, Bachli EB, Kurrer MO, Schoedon G. Wnt5A/CaMKII signaling contributes to the inflammatory response of macrophages and is a goal for the antiinflammatory motion of activated protein C and interleukin-10. Arterioscler Thromb Vasc Biol. 2008;28:504–10.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dailey W, Shunemann R, Yang F, Moore M, Knapp A, Chen P, et al. Variations in activation of intracellular signaling in major human retinal endothelial cells between isoforms of VEGFA 165. Mol Vis. 2021;27:191–205.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Plyukhova AA, Budzinskaya MV, Starostin KM, Rejdak R, Bucolo C, Reibaldi M, et al. Comparative Security of Bevacizumab, Ranibizumab, and Aflibercept for Remedy of Neovascular Age-Associated Macular Degeneration (AMD): A Systematic Assessment and Community Meta-Evaluation of Direct Comparative Research. J Clin Med. 2020;9:1–14.

    Article 
    CAS 

    Google Scholar 

  • Sales space BJ, Ramakrishnan B, Narayan Ok, Wollacott AM, Babcock GJ, Shriver Z, et al. Extending human IgG half-life utilizing structure-guided design. MAbs. 2018;10:1098–110.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bajardi-Taccioli A, Blum A, Xu C, Sosic Z, Bergelson S, Feschenko M. Impact of protein aggregates on characterization of FcRn binding of Fc-fusion therapeutics. Mol Immunol. 2015;67:616–24.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chen X, Zaro JL, Shen W-C. Fusion protein linkers: property, design and performance. Adv Drug Deliv Rev. 2013;65:1357–69.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Brysbaert G, Mauri T, de Ruyck J, Lensink MF. Identification of Key Residues in Proteins By Centrality Evaluation and Flexibility Prediction with RINspector. Curr Protoc Bioinform. 2019;65:e66.

    Article 
    CAS 

    Google Scholar 

  • Facebook
    Twitter
    Pinterest
    WhatsApp
    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments