Wednesday, September 28, 2022
HomeChemistryDense inorganic electrolyte particles as a lever to advertise composite electrolyte conductivity

Dense inorganic electrolyte particles as a lever to advertise composite electrolyte conductivity

Facebook
Twitter
Pinterest
WhatsApp

  • Armand, M. & Tarascon, J. M. Points and challenges going through rechargeable lithium batteries. Nature 414, 359–367 (2001).

    Article 

    Google Scholar 

  • Chu, S., Cui, Y. & Liu, N. The trail in the direction of sustainable power. Nat. Mater. 16, 16–22 (2016).

    Article 
    CAS 

    Google Scholar 

  • Varzi, A., Raccichini, R. & Scrosati, B. Challenges and prospects of the function of strong electrolytes within the revitalization of lithium steel batteries. J. Mater. Chem. A 4, 17251–17259 (2016).

    CAS 
    Article 

    Google Scholar 

  • Tan, D. H. S., Banerjee, A., Chen, Z. & Meng, Y. S. From nanoscale interface characterization to sustainable power storage utilizing all-solid-state batteries. Nat. Nanotechnol. https://doi.org/10.1038/s41565-020-0657-x (2020).

  • Chen, R., Li, Q., Yu, X., Chen, L. & Li, H. Approaching virtually accessible solid-state batteries: stability points associated to strong electrolytes and interfaces. Chem. Rev. https://doi.org/10.1021/acs.chemrev.9b00268 (2019).

  • Lengthy, L., Wang, S., Xiao, M. & Meng, Y. Polymer electrolytes for lithium polymer batteries. J. Mater. Chem. A 4, 10038–10069 (2016).

    CAS 
    Article 

    Google Scholar 

  • Zhou, D., Shanmukaraj, D., Tkacheva, A., Armand, M. & Wang, G. Polymer electrolytes for lithium-based batteries: advances and prospects. Chem 5, 2326–2352 (2019).

    CAS 
    Article 

    Google Scholar 

  • Solar, C., Liu, J., Gong, Y., Wilkinson, D. P. & Zhang, J. Current advances in all-solid-state rechargeable lithium batteries. Nano Vitality 33, 363–386 (2017).

    CAS 
    Article 

    Google Scholar 

  • Meesala, Y., Jena, A., Chang, H. & Liu, R. S. Current developments in Li-ion conductors for all-solid-state Li-ion batteries. ACS Vitality Lett. 2, 2734–2751 (2017).

    CAS 
    Article 

    Google Scholar 

  • Famprikis, T., Canepa, P., Dawson, J. A., Islam, M. S. & Masquelier, C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18, 1278–1291 (2019).

    CAS 
    Article 

    Google Scholar 

  • Balaish, M. et al. Processing skinny however sturdy electrolytes for solid-state batteries. Nat. Vitality https://doi.org/10.1038/s41560-020-00759-5 (2021).

  • Lewis, J. A. et al. Linking void and interphase evolution to electrochemistry in solid-state batteries utilizing operando X-ray tomography. Nat. Mater. https://doi.org/10.1038/s41563-020-00903-2 (2021).

  • Kasemchainan, J. et al. Crucial stripping present results in dendrite formation on plating in lithium anode strong electrolyte cells. Nat. Mater. 18, 1105–1111 (2019).

    CAS 
    Article 

    Google Scholar 

  • Zhang, J. et al. Excessive-voltage and free-standing poly(propylene carbonate)/Li6.75La3Zr1.75Ta0.25O12 composite strong electrolyte for extensive temperature vary and versatile strong lithium ion battery. J. Mater. Chem. A 5, 4940–4948 (2017).

    CAS 
    Article 

    Google Scholar 

  • Chen, F. et al. Stable polymer electrolytes incorporating cubic Li7La3Zr2O12 for all-solid-state lithium rechargeable batteries. Electrochim. Acta 258, 1106–1114 (2017).

    CAS 
    Article 

    Google Scholar 

  • Zhang, X. et al. Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces excessive ionic conductivity, mechanical power, and thermal stability of strong composite electrolytes. J. Am. Chem. Soc. 139, 13779–13785 (2017).

    CAS 
    Article 

    Google Scholar 

  • Chen, L. et al. PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic. Nano Vitality 46, 176–184 (2018).

    CAS 
    Article 

    Google Scholar 

  • Li, R. et al. Unitized configuration design of thermally secure composite polymer electrolyte for lithium batteries able to working over a variety of temperatures. Adv. Eng. Mater. https://doi.org/10.1002/adem.201900055 (2019).

  • Villa, A., Verduzco, J. C., Libera, J. A. & Marinero, E. E. Ionic conductivity optimization of composite polymer electrolytes via filler particle chemical modification. Ionics 27, 2483–2493 (2021).

    CAS 
    Article 

    Google Scholar 

  • Zha, W., Chen, F., Yang, D., Shen, Q. & Zhang, L. Excessive-performance Li6.4La3Zr1.4Ta0.6O12/poly(ethylene oxide)/succinonitrile composite electrolyte for solid-state lithium batteries. J. Energy Sources 397, 87–94 (2018).

    CAS 
    Article 

    Google Scholar 

  • Zhang, J. et al. Versatile and ion-conducting membrane electrolytes for solid-state lithium batteries: dispersion of garnet nanoparticles in insulating polyethylene oxide. Nano Vitality 28, 447–454 (2016).

    CAS 
    Article 

    Google Scholar 

  • Zhao, C. Z. et al. An anion-immobilized composite electrolyte for dendrite-free lithium steel anodes. Proc. Natl Acad. Sci. U.S.A. 114, 11069–11074 (2017).

    CAS 
    Article 

    Google Scholar 

  • Cheng, S. H. S. et al. Electrochemical efficiency of all-solid-state lithium batteries utilizing inorganic lithium garnets particulate strengthened PEO/LiClO4 electrolyte. Electrochim. Acta 253, 430–438 (2017).

    CAS 
    Article 

    Google Scholar 

  • Tao, X. et al. Stable-state lithium–sulfur batteries operated at 37 °C with composites of nanostructured Li7La3Zr2O12/carbon foam and polymer. Nano Lett. 17, 2967–2972 (2017).

    CAS 
    Article 

    Google Scholar 

  • Liang, Y. F. et al. A superior composite gel polymer electrolyte of Li7La3Zr2O12-poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) for rechargeable solid-state lithium ion batteries. Mater. Res. Bull. 102, 412–417 (2018).

    CAS 
    Article 

    Google Scholar 

  • Li, Z. et al. Ionic conduction in composite polymer electrolytes: case of PEO:Ga-LLZO composites. ACS Appl. Mater. Interfaces 11, 784–791 (2019).

    CAS 
    Article 

    Google Scholar 

  • Samsinger, R. F. et al. Affect of the processing on the ionic conductivity of solid-state hybrid electrolytes based mostly on glass-ceramic particles dispersed in PEO with LiTFSI. J. Electrochem. Soc. 167, 120538 (2020).

    CAS 
    Article 

    Google Scholar 

  • Mei, X. et al. A quantitative correlation between macromolecular crystallinity and ionic conductivity in polymer-ceramic composite strong electrolytes. Mater. At present Commun. 24, 101004 (2020).

    CAS 
    Article 

    Google Scholar 

  • Kamaya, N. et al. A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011).

    CAS 
    Article 

    Google Scholar 

  • Kato, M., Hiraoka, Okay. & Seki, S. Investigation of the ionic conduction mechanism of polyether/Li7La3Zr2O12 composite strong electrolytes by electrochemical impedance spectroscopy. J. Electrochem. Soc. 167, 070559 (2020).

    Article 

    Google Scholar 

  • Langer, F., Bardenhagen, I., Glenneberg, J. & Kun, R. Microstructure and temperature dependent lithium ion transport of ceramic–polymer composite electrolyte for solid-state lithium ion batteries based mostly on garnet-type Li7La3Zr2O12. Stable State Ion. 291, 8–13 (2016).

    CAS 
    Article 

    Google Scholar 

  • Wang, Y. J., Pan, Y. & Kim, D. Conductivity research on ceramic Li1.3Al0.3Ti1.7(PO4)3-filled PEO-based strong composite polymer electrolytes. J. Energy Sources 159, 690–701 (2006).

    CAS 
    Article 

    Google Scholar 

  • Zhao, Y. et al. A promising PEO/LAGP hybrid electrolyte ready by a easy technique for all-solid-state lithium batteries. Stable State Ion. 295, 65–71 (2016).

    CAS 
    Article 

    Google Scholar 

  • Xia, Y. et al. A newly designed composite gel polymer electrolyte based mostly on poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) for enhanced solid-state lithium-sulfur batteries. Chem. Eur. J. 23, 15203–15209 (2017).

    CAS 
    Article 

    Google Scholar 

  • Wang, W., Yi, E., Fici, A. J., Laine, R. M. & Kieffer, J. Lithium ion conducting poly(ethylene oxide)-based strong electrolytes containing lively or passive ceramic nanoparticles. J. Phys. Chem. C. 121, 2563–2573 (2017).

    CAS 
    Article 

    Google Scholar 

  • Jung, Y.-C., Lee, S.-M., Choi, J.-H., Jang, S. S. & Kim, D.-W. All solid-state lithium batteries assembled with hybrid strong electrolytes. J. Electrochem. Soc. 162, A704–A710 (2015).

    CAS 
    Article 

    Google Scholar 

  • Park, M. S., Jung, Y. C. & Kim, D. W. Hybrid strong electrolytes composed of poly(1,4-butylene adipate) and lithium aluminum germanium phosphate for all-solid-state Li/LiNi0.6Co0.2Mn0.2O2 cells. Stable State Ion. 315, 65–70 (2018).

    CAS 
    Article 

    Google Scholar 

  • MacFarlane, D. R., Newman, P. J., Nairn, Okay. M. & Forsyth, M. Lithium-ion conducting ceramic/polyether composites. Electrochim. Acta 43, 1333–1337 (1998).

    CAS 
    Article 

    Google Scholar 

  • Yi, J., Liu, Y., Qiao, Y., He, P. & Zhou, H. Boosting the cycle lifetime of Li–O2 batteries at elevated temperature by using a hybrid polymer–ceramic strong electrolyte. ACS Vitality Lett. 2, 1378–1384 (2017).

    CAS 
    Article 

    Google Scholar 

  • Maxwell, J. C. A Treatise on Electrical energy and Magnetism Vol. 1 (Clarendon Press, 1873).

  • Barrande, M., Bouchet, R. & Denoyel, R. Tortuosity of porous particles. Anal. Chem. 79, 9115–9121 (2007).

    CAS 
    Article 

    Google Scholar 

  • Weissberg, H. L. Efficient diffusion coefficient in porous media. J. Appl. Phys. 34, 2636–2639 (1963).

    CAS 
    Article 

    Google Scholar 

  • Bouchet, R., Devaux, D., Wernert, V. & Denoyel, R. Separation of bulk, floor, and topological contributions to the conductivity of suspensions of porous particles. J. Phys. Chem. C. 116, 5090–5096 (2012).

    CAS 
    Article 

    Google Scholar 

  • Kubanska, A. et al. Elaboration of managed measurement Li1.5Al0.5Ge1.5(PO4)3 crystallites from glass-ceramics. Stable State Ion. 266, 44–50 (2014).

    CAS 
    Article 

    Google Scholar 

  • Hou, M., Liang, F., Chen, Okay., Dai, Y. & Xue, D. Challenges and views of NASICON-type strong electrolytes for all-solid-state lithium batteries. Nanotechnology 31, 132003 (2020).

    CAS 
    Article 

    Google Scholar 

  • Devaux, D., Bouchet, R., Glé, D. & Denoyel, R. Mechanism of ion transport in PEO/LiTFSI complexes: impact of temperature, molecular weight and finish teams. Stable State Ion. 227, 119–127 (2012).

    CAS 
    Article 

    Google Scholar 

  • Pfaffenhuber, C., Göbel, M., Popovic, J. & Maier, J. Soggy-sand electrolytes: standing and views. Phys. Chem. Chem. Phys. 15, 18318–18335 (2013).

    CAS 
    Article 

    Google Scholar 

  • Aveyard, R. et al. Stable/Liquid Dispersions (ed. Tadros, T. F.) (Tutorial Press, 1987).

  • Weiss, M. et al. From liquid‑ to strong‑state batteries: ion switch kinetics of heteroionic interfaces. Electrochem. Vitality Rev. https://doi.org/10.1007/s41918-020-00062-7 (2020).

  • Facebook
    Twitter
    Pinterest
    WhatsApp
    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments