Wednesday, September 28, 2022
HomeMicrobiologyConoid extrusion regulates glideosome meeting to regulate motility and invasion in Apicomplexa

Conoid extrusion regulates glideosome meeting to regulate motility and invasion in Apicomplexa

Facebook
Twitter
Pinterest
WhatsApp

  • Adl, S. M. et al. Variety, nomenclature, and taxonomy of protists. Syst. Biol. 56, 684–689 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Montoya, J. G. & Liesenfeld, O. Toxoplasmosis. Lancet 363, 1965–1976 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Phillips, M. A. et al. Malaria. Nat. Rev. Dis. Prim. 3, 17050 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Rashid, M. et al. A scientific evaluate on modelling approaches for financial losses research brought on by parasites and their related illnesses in cattle. Parasitology 146, 129–141 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Guerin, A. & Striepen, B. The biology of the intestinal intracellular parasite Cryptosporidium. Cell Host Microbe 28, 509–515 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Frenal, Ok., Dubremetz, J. F., Lebrun, M. & Soldati-Favre, D. Gliding motility powers invasion and egress in Apicomplexa. Nat. Rev. Microbiol. 15, 645–660 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gubbels, M. J. & Duraisingh, M. T. Evolution of apicomplexan secretory organelles. Int J. Parasitol. 42, 1071–1081 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Dos Santos Pacheco, N., Tosetti, N., Koreny, L., Waller, R. F. & Soldati-Favre, D. Evolution, composition, meeting, and performance of the conoid in Apicomplexa. Traits Parasitol. 36, 688–704 (2020).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • D’Haese, J., Mehlhorn, H. & Peters, W. Comparative electron microscope examine of pellicular constructions in coccidia (Sarcocystis, Besnoitia and Eimeria). Int. J. Parasitol. 7, 505–518 (1977).

    PubMed 
    Article 

    Google Scholar 

  • Mann, T. & Beckers, C. J. Characterization of the subpellicular community, a filamentous membrane skeletal element within the parasite Toxoplasma gondii. Mol. Biochem Parasitol. 115, 257–268 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Morrissette, N. S. & Sibley, L. D. Cytoskeleton of apicomplexan parasites. Microbiol Mol. Biol. Rev. 66, 21–38 (2002).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Tran, J. Q. et al. RNG1 is a late marker of the apical polar ring in Toxoplasma gondii. Cytoskeleton (Hoboken) 67, 586–598 (2010).

    CAS 
    Article 

    Google Scholar 

  • Leung, J. M. et al. Stability and performance of a putative microtubule-organizing middle within the human parasite Toxoplasma gondii. Mol. Biol. Cell 28, 1361–1378 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Dubois, D. J. & Soldati-Favre, D. Biogenesis and secretion of micronemes in Toxoplasma gondii. Cell Microbiol. 21, e13018 (2019).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Ben Chaabene, R., Lentini, G. & Soldati-Favre, D. Biogenesis and discharge of the rhoptries: key organelles for entry and hijack of host cells by the Apicomplexa. Mol. Microbiol. 115, 453–465 (2021).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Besteiro, S., Michelin, A., Poncet, J., Dubremetz, J. F. & Lebrun, M. Export of a Toxoplasma gondii rhoptry neck protein advanced on the host cell membrane to type the transferring junction throughout invasion. PLoS Pathog. 5, e1000309 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Jacot, D. et al. An Apicomplexan actin-binding protein serves as a connector and lipid sensor to coordinate motility and invasion. Cell Host Microbe 20, 731–743 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Tosetti, N., Dos Santos Pacheco, N., Soldati-Favre, D. & Jacot, D. Three F-actin meeting facilities regulate organelle inheritance, cell-cell communication and motility in Toxoplasma gondii. eLife 8, e42669 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Daher, W., Plattner, F., Carlier, M. F. & Soldati-Favre, D. Concerted motion of two formins in gliding motility and host cell invasion by Toxoplasma gondii. PLoS Pathog. 6, e1001132 (2010).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Baum, J. et al. A malaria parasite formin regulates actin polymerization and localizes to the parasite-erythrocyte transferring junction throughout invasion. Cell Host Microbe 3, 188–198 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dubremetz, J. F. Rhoptries are main gamers in Toxoplasma gondii invasion and host cell interplay. Cell Microbiol. 9, 841–848 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Frenal, Ok., Marq, J. B., Jacot, D., Polonais, V. & Soldati-Favre, D. Plasticity between MyoC- and MyoA-glideosomes: an instance of practical compensation in Toxoplasma gondii invasion. PLoS Pathog. 10, e1004504 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Graindorge, A. et al. The conoid related motor MyoH is indispensable for Toxoplasma gondii entry and exit from host cells. PLoS Pathog. 12, e1005388 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Heaslip, A. T., Nishi, M., Stein, B. & Hu, Ok. The motility of a human parasite, Toxoplasma gondii, is regulated by a novel lysine methyltransferase. PLoS Pathog. 7, e1002201 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bertiaux, E. et al. Enlargement microscopy gives new insights into the cytoskeleton of malaria parasites together with the conservation of a conoid. PLoS Biol. 19, e3001020 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Koreny, L. et al. Molecular characterization of the conoid advanced in Toxoplasma reveals its conservation in all apicomplexans, together with Plasmodium species. PLoS Biol. 19, e3001081 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wall, R. J. et al. SAS6-like protein in Plasmodium signifies that conoid-associated apical advanced proteins persist in invasive phases inside the mosquito vector. Sci. Rep. 6, 28604 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ferreira, J. L. et al. Type follows perform: variable microtubule structure within the malaria parasite. Preprint at bioRxiv https://doi.org/10.1101/2022.04.13.488170 (2022).

  • Mondragon, R. & Frixione, E. Ca2+-dependence of conoid extrusion in Toxoplasma gondii tachyzoites. J. Eukaryot. Microbiol 43, 120–127 (1996).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Monteiro, V. G., de Melo, E. J., Attias, M. & de Souza, W. Morphological modifications throughout conoid extrusion in Toxoplasma gondii tachyzoites handled with calcium ionophore. J. Struct. Biol. 136, 181–189 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Del Carmen, M. G., Mondragon, M., Gonzalez, S. & Mondragon, R. Induction and regulation of conoid extrusion in Toxoplasma gondii. Cell Microbiol. 11, 967–982 (2009).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Hortua Triana, M. A., Marquez-Nogueras, Ok. M., Vella, S. A. & Moreno, S. N. J. Calcium signaling and the lytic cycle of the Apicomplexan parasite Toxoplasma gondii. Biochim. Biophys. Acta Mol. Cell Res. 1865, 1846–1856 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Heaslip, A. T., Ems-McClung, S. C. & Hu, Ok. TgICMAP1 is a novel microtubule binding protein in Toxoplasma gondii. PLoS ONE 4, e7406 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Mageswaran, S. Ok. et al. In situ ultrastructures of two evolutionarily distant apicomplexan rhoptry secretion techniques. Nat. Commun. 12, 4983 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Leung, J. M., Liu, J., Wetzel, L. A. & Hu, Ok. Centrin2 from the human parasite Toxoplasma gondii is required for its invasion and intracellular replication. J. Cell Sci. 132, jcs228791 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Dos Santos Pacheco, N. & Soldati-Favre, D. Coupling auxin-inducible degron system with ultrastructure growth microscopy to speed up the invention of gene perform in Toxoplasma gondii. Strategies Mol. Biol. 2369, 121–137 (2021).

    PubMed 
    Article 

    Google Scholar 

  • de Leon, J. C. et al. A SAS-6-like protein means that the Toxoplasma conoid advanced developed from flagellar elements. Eukaryot. Cell 12, 1009–1019 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Lengthy, S., Anthony, B., Drewry, L. L. & Sibley, L. D. A conserved ankyrin repeat-containing protein regulates conoid stability, motility and cell invasion in Toxoplasma gondii. Nat. Commun. 8, 2236 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Nagayasu, E., Hwang, Y. C., Liu, J., Murray, J. M. & Hu, Ok. Lack of a doublecortin (DCX)-domain protein causes structural defects in a tubulin-based organelle of Toxoplasma gondii and impairs host-cell invasion. Mol. Biol. Cell 28, 411–428 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Howard, B. L. et al. Identification of potent phosphodiesterase inhibitors that reveal cyclic nucleotide-dependent capabilities in apicomplexan parasites. ACS Chem. Biol. 10, 1145–1154 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hu, Ok. et al. Cytoskeletal elements of an invasion machine–the apical advanced of Toxoplasma gondii. PLoS Pathog. 2, e13 (2006).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Lentini, G., Dubois, D. J., Maco, B., Soldati-Favre, D. & Frenal, Ok. The roles of Centrin 2 and Dynein Mild Chain 8a in apical secretory organelles discharge of Toxoplasma gondii. Visitors 20, 583–600 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hammoudi, P. M., Maco, B., Dogga, S. Ok., Frenal, Ok. & Soldati-Favre, D. Toxoplasma gondii TFP1 is an important transporter household protein essential for microneme maturation and exocytosis. Mol Microbiol. 109, 225–244 (2018).

  • Barylyuk, Ok. et al. A complete subcellular atlas of the Toxoplasma proteome by way of hyperLOPIT gives spatial context for protein capabilities. Cell Host Microbe 28, 752–766 e759 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sidik, S. M. et al. A genome-wide CRISPR display in Toxoplasma identifies important apicomplexan genes. Cell 166, 1423–1435.e1412 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kluska, Ok., Adamczyk, J. & Krężel, A. Steel binding properties, stability and reactivity of zinc fingers. Coord. Chem. Rev. 367, 18–64 (2018).

    CAS 
    Article 

    Google Scholar 

  • Munera Lopez, J. et al. An apical protein Pcr2 is required for persistent motion by the human parasite Toxoplasma gondii. PLOS Pathog. 18, e1010776 (2022).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Tosetti, N. et al. Important perform of the alveolin community within the subpellicular microtubules and conoid meeting in Toxoplasma gondii. eLife 9, e56635 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Beck, J. R. et al. A novel household of Toxoplasma IMC proteins shows a hierarchical group and capabilities in coordinating parasite division. PLoS Pathog. 6, e1001094 (2010).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Carruthers, V., Giddings, O. Ok. & Sibley, L. D. Secretion of micronemal proteins is related to toxoplasma invasion of host cells. Cell. Microbiol. 1, 225–235 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bisio, H., Lunghi, M., Brochet, M. & Soldati-Favre, D. Phosphatidic acid governs pure egress in Toxoplasma gondii by way of a guanylate cyclase receptor platform. Nat. Microbiol 4, 420–428 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dos Santos Pacheco, N. et al. Revisiting the position of Toxoplasma gondii ERK7 within the upkeep and stability of the apical advanced. mBio 12, e0205721 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Cassandri, M. et al. Zinc-finger proteins in well being and illness. Cell Loss of life Disco. 3, 17071 (2017).

    Article 
    CAS 

    Google Scholar 

  • Jumper, J. et al. Extremely correct protein construction prediction with AlphaFold. Nature 596, 583–589 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • James, E. I., Murphree, T. A., Vorauer, C., Engen, J. R. & Guttman, M. Advances in hydrogen/deuterium alternate mass spectrometry and the pursuit of difficult organic techniques. Chem. Rev. 122, 7562–7623 (2021).

  • Bannister, L. H., Hopkins, J. M., Fowler, R. E., Krishna, S. & Mitchell, G. H. Ultrastructure of rhoptry growth in Plasmodium falciparum erythrocytic schizonts. Parasitology 121, 273–287 (2000).

    PubMed 
    Article 

    Google Scholar 

  • Hanssen, E. et al. Electron tomography of Plasmodium falciparum merozoites reveals core mobile occasions that underpin erythrocyte invasion. Cell Microbiol. 15, 1457–1472 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bushell, E. et al. Purposeful profiling of a plasmodium genome reveals an abundance of important genes. Cell 170, 260–272 e268 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zhang, M. et al. Uncovering the important genes of the human malaria parasite Plasmodium falciparum by saturation mutagenesis. Science 360, eaap7847 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Laurentino, E. C. et al. Experimentally managed downregulation of the histone chaperone FACT in Plasmodium berghei reveals that it’s essential to male gamete fertility. Cell Microbiol. 13, 1956–1974 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Nichols, B. A. & Chiappino, M. L. Cytoskeleton of Toxoplasma gondii. J. Protozool. 34, 217–226 (1987).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sivagurunathan, S., Heaslip, A., Liu, J. & Hu, Ok. Identification of practical modules of AKMT, a novel lysine methyltransferase regulating the motility of Toxoplasma gondii. Mol. Biochem. Parasitol. 189, 43–53 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Pavlou, G. et al. Coupling polar adhesion with traction, spring, and torque forces permits high-speed helical migration of the protozoan parasite toxoplasma. ACS Nano. 14, 7121–7139 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Pavlou, G. et al. Toxoplasma parasite twisting movement mechanically induces host cell membrane fission to finish invasion inside a protecting vacuole. Cell Host Microbe 24, 81–96 e85 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Soldati, D. & Boothroyd, J. Transient transfection and expression within the obligate intracellular parasite Toxoplasma gondii. Science 260, 349–352 (1993).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Brown, Ok. M., Lengthy, S. & Sibley, L. D. Plasma membrane affiliation by N-acylation governs PKG perform in Toxoplasma gondii. mBio 8, e00375-17 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Meissner, M., Brecht, S., Bujard, H. & Soldati, D. Modulation of myosin A expression by a newly established tetracycline repressor-based inducible system in Toxoplasma gondii. Nucleic Acid Res. 29, E115 (2001).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Billker, O. et al. Calcium and a calcium-dependent protein kinase regulate gamete formation and mosquito transmission in a malaria parasite. Cell 117, 503–514 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Fang, H. et al. Epistasis research reveal redundancy amongst calcium-dependent protein kinases in motility and invasion of malaria parasites. Nat. Commun. 9, 4248 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Brusini, L., Dos Santos Pacheco, N., Tromer, E. C., Soldati-Favre, D. & Brochet, M. Composition and group of kinetochores present plasticity in apicomplexan chromosome segregation. J. Cell Biol. 221, e202111084 (2022).

    PubMed 
    Article 

    Google Scholar 

  • Sebastian, S. et al. A Plasmodium calcium-dependent protein kinase controls zygote growth and transmission by translationally activating repressed mRNAs. Cell Host Microbe 12, 9–19 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gurnett, A. M. et al. Purification and molecular characterization of cGMP-dependent protein kinase from Apicomplexan parasites. A novel chemotherapeutic goal. J. Biol. Chem. 277, 15913–15922 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Plattner, F. et al. Toxoplasma profilin is crucial for host cell invasion and TLR11-dependent induction of an interleukin-12 response. Cell Host Microbe 3, 77–87 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sheiner, L. et al. A scientific display to find and analyze apicoplast proteins identifies a conserved and important protein import issue. PLoS Pathog. 7, e1002392 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lentini, G. et al. Structural insights into an atypical secretory pathway kinase essential for Toxoplasma gondii invasion. Nat. Commun. 12, 3788 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Moon, R. W. et al. A cyclic GMP signalling module that regulates gliding motility in a malaria parasite. PLoS Pathog. 5, e1000599 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Mathur, V. et al. A number of impartial origins of apicomplexan-like parasites. Curr. Biol. 29, 2936–2941.e5 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mathur, V. et al. Phylogenomics identifies a brand new main subgroup of apicomplexans, marosporida class nov., with excessive apicoplast genome discount. Genome Biol. Evol. 13, evaa244 (2021).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Janouškovec, J. et al. Apicomplexan-like parasites are polyphyletic and extensively however selectively depending on cryptic plastid organelles. eLife 8, e49662 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Katoh, Ok., Kuma, Ok., Toh, H. & Miyata, T. MAFFT model 5: enchancment in accuracy of a number of sequence alignment. Nucleic Acids Res. 33, 511–518 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Eddy, S. R. A brand new technology of homology search instruments primarily based on probabilistic inference. Genome Informatics. Worldwide Convention on Genome Informatics 23, 205–211 (2009).

    PubMed 

    Google Scholar 

  • Waterhouse, A. M., Procter, J. B., Martin, D. M., Clamp, M. & Barton, G. J. Jalview Model 2–a a number of sequence alignment editor and evaluation workbench. Bioinformatics 25, 1189–1191 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Soding, J. Protein homology detection by HMM-HMM comparability. Bioinformatics 21, 951–960 (2005).

    PubMed 
    Article 

    Google Scholar 

  • Minh, B. Q. et al. IQ-TREE 2: New fashions and environment friendly strategies for phylogenetic inference within the genomic period. Mol. Biol. Evol. 37, 1530–1534 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Revell, L. J. phytools: an R bundle for phylogenetic comparative biology (and different issues). Strategies Ecol. Evolution 3, 217–223 (2012).

    Article 

    Google Scholar 

  • Facebook
    Twitter
    Pinterest
    WhatsApp
    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments