Monday, September 26, 2022
HomeBiochemistryCompartmentalization of the replication fork by single-stranded DNA-binding protein regulates translesion synthesis

Compartmentalization of the replication fork by single-stranded DNA-binding protein regulates translesion synthesis

Facebook
Twitter
Pinterest
WhatsApp

  • Fuchs, R. P. & Fujii, S. Translesion DNA synthesis and mutagenesis in prokaryotes. Chilly Spring Harb. Perspect. Biol. 5, a012682 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Moldovan, G.-L., Pfander, B. & Jentsch, S. PCNA, the maestro of the replication fork. Cell 129, 665–679 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dalrymple, B. P., Kongsuwan, Ok., Wijffels, G., Dixon, N. E. & Jennings, P. A. A common protein-protein interplay motif within the eubacterial DNA replication and restore programs. Proc. Natl Acad. Sci. USA 98, 11627–11632 (2001).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Georgescu, R. E. et al. Construction of a sliding clamp on DNA. Cell 132, 43–54 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Krishna, T. S., Kong, X. P., Gary, S., Burgers, P. M. & Kuriyan, J. Crystal construction of the eukaryotic DNA polymerase processivity issue PCNA. Cell 79, 1233–1243 (1994).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bunting, Ok. A., Roe, S. M. & Pearl, L. H. Structural foundation for recruitment of translesion DNA polymerase Pol IV/DinB to the beta-clamp. EMBO J. 22, 5883–5892 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Patoli, A. A., Winter, J. A. & Bunting, Ok. A. The UmuC subunit of the E. coli DNA polymerase V reveals a singular interplay with the β-clamp processivity issue. BMC Struct. Biol. 13, 12 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • López de Saro, F. J. & O’Donnell, M. Interplay of the beta sliding clamp with MutS, ligase, and DNA polymerase I. Proc. Natl Acad. Sci. USA 98, 8376–8380 (2001).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kurz, M., Dalrymple, B., Wijffels, G. & Kongsuwan, Ok. Interplay of the sliding clamp beta-subunit and Hda, a DnaA-related protein. J. Bacteriol. 186, 3508–3515 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ozaki, S. et al. A replicase clamp-binding dynamin-like protein promotes colocalization of nascent DNA strands and equipartitioning of chromosomes in E. coli. Cell Rep. 4, 985–995 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Jeruzalmi, D. et al. Mechanism of processivity clamp opening by the delta subunit wrench of the clamp loader advanced of E. coli DNA polymerase III. Cell 106, 417–428 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Tan, Ok. W., Pham, T. M., Furukohri, A., Maki, H. & Akiyama, M. T. Recombinase and translesion DNA polymerase lower the pace of replication fork development throughout the DNA harm response in Escherichia coli cells. Nucleic Acids Res. 43, 1714–1725 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Pluciennik, A., Burdett, V., Lukianova, O., O’Donnell, M. & Modrich, P. Involvement of the clamp in methyl-directed mismatch restore in vitro. J. Biol. Chem. 284, 32782–32791 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Furukohri, A., Nishikawa, Y., Akiyama, M. T. & Maki, H. Interplay between Escherichia coli DNA polymerase IV and single-stranded DNA-binding protein is required for DNA synthesis on SSB-coated DNA. Nucleic Acids Res. 40, 6039–6048 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Arad, G., Hendel, A., Urbanke, C., Curth, U. & Livneh, Z. Single-stranded DNA-binding protein recruits DNA polymerase V to primer termini on RecA-coated DNA. J. Biol. Chem. 283, 8274–8282 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Molineux, I. J. & Gefter, M. L. Properties of the Escherichia coli in DNA binding (unwinding) protein: interplay with DNA polymerase and DNA. Proc. Natl Acad. Sci. USA 71, 3858–3862 (1974).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Shereda, R. D., Kozlov, A. G., Lohman, T. M., Cox, M. M. & Keck, J. L. SSB as an organizer/mobilizer of genome upkeep complexes. Crit. Rev. Biochem. Mol. Biol. 43, 289–318 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Chang, S. et al. A gatekeeping operate of the replicative polymerase controls pathway alternative within the decision of lesion-stalled replisomes. Proc. Natl Acad. Sci. USA 116, 25591–25601 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sigal, N., Delius, H., Kornberg, T., Gefter, M. L. & Alberts, B. A DNA-unwinding protein remoted from Escherichia coli: its interplay with DNA and with DNA polymerases. Proc. Natl Acad. Sci. USA 69, 3537–3541 (1972).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Shereda, R. D., Reiter, N. J., Butcher, S. E. & Keck, J. L. Identification of the SSB binding web site on E. coli RecQ reveals a conserved floor for binding SSB’s C terminus. J. Mol. Biol. 386, 612–625 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ryzhikov, M., Koroleva, O., Postnov, D., Tran, A. & Korolev, S. Mechanism of RecO recruitment to DNA by single-stranded DNA binding protein. Nucleic Acids Res. 39, 6305–6314 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Uchida, Ok. et al. Overproduction of Escherichia coli DNA polymerase DinB (Pol IV) inhibits replication fork development and is deadly. Mol. Microbiol. 70, 608–622 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Scotland, M. Ok. et al. A genetic choice for DinB mutants reveals an interplay between DNA polymerase IV and the replicative polymerase that’s required for translesion synthesis. PLoS Genet. 11, e1005507 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Jarosz, D. F., Godoy, V. G., Delaney, J. C., Essigmann, J. M. & Walker, G. C. A single amino acid governs enhanced exercise of DinB DNA polymerases on broken templates. Nature 439, 225–228 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Bjedov, I. et al. Involvement of Escherichia coli DNA polymerase IV in tolerance of cytotoxic alkylating DNA lesions in vivo. Genetics 176, 1431–1440 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Heltzel, J. M. H., Maul, R. W., Scouten Ponticelli, S. Ok. & Sutton, M. D. A mannequin for DNA polymerase switching involving a single cleft and the rim of the sliding clamp. Proc. Natl Acad. Sci. USA 106, 12664–12669 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Benson, R. W., Cafarelli, T. M., Rands, T. J., Lin, I. & Godoy, V. G. Collection of dinB alleles suppressing survival loss upon dinB overexpression in Escherichia coli. J. Bacteriol. 196, 3023–3035 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Indiani, C., Langston, L. D., Yurieva, O., Goodman, M. F. & O’Donnell, M. Translesion DNA polymerases rework the replisome and alter the pace of the replicative helicase. Proc. Natl Acad. Sci. USA 106, 6031–6038 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Thrall, E. S., Kath, J. E., Chang, S. & Loparo, J. J. Single-molecule imaging reveals a number of pathways for the recruitment of translesion polymerases after DNA harm. Nat. Commun. 8, 2170 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Uphoff, S., Reyes-Lamothe, R., Garza de Leon, F., Sherratt, D. J. & Kapanidis, A. N. Single-molecule DNA restore in stay micro organism. Proc. Natl Acad. Sci. USA 110, 8063–8068 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Godoy, V. G. et al. UmuD and RecA instantly modulate the mutagenic potential of the Y household DNA polymerase DinB. Mol. Cell 28, 1058–1070 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sladewski, T. E., Hetrick, Ok. M. & Foster, P. L. Escherichia coli Rep DNA helicase and error-prone DNA polymerase IV work together bodily and functionally. Mol. Microbiol. 80, 524–541 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Cohen, S. E., Godoy, V. G. & Walker, G. C. Transcriptional modulator NusA interacts with translesion DNA polymerases in Escherichia coli. J. Bacteriol. 191, 665–672 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cafarelli, T. M., Rands, T. J. & Godoy, V. G. The DinB•RecA advanced of Escherichia coli mediates an environment friendly and high-fidelity response to ubiquitous alkylation lesions. Environ. Mol. Mutagen. 55, 92–102 (2014).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Kath, J. E. et al. Polymerase alternate on single DNA molecules reveals processivity clamp management of translesion synthesis. Proc. Natl Acad. Sci. USA 111, 7647–7652 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Jergic, S. et al. A direct proofreader–clamp interplay stabilizes the Pol III replicase within the polymerization mode. EMBO J. 32, 1322–1333 (2013).

  • Pagès, V., Mazón, G., Naiman, Ok., Philippin, G. & Fuchs, R. P. Monitoring bypass of single replication-blocking lesions by harm avoidance within the Escherichia coli chromosome. Nucleic Acids Res. 40, 9036–9043 (2012).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Li, G.-W., Burkhardt, D., Gross, C. & Weissman, J. S. Quantifying absolute protein synthesis charges reveals rules underlying allocation of mobile sources. Cell 157, 624–635 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Henrikus, S. S. et al. DNA polymerase IV primarily operates exterior of DNA replication forks in Escherichia coli. PLoS Genet. 14, e1007161 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Heltzel, J. M. H., Maul, R. W., Wolff, D. W. & Sutton, M. D. Escherichia coli DNA Polymerase IV (Pol IV), however not Pol II, dynamically switches with a stalled Pol III* replicase. J. Bacteriol. 194, 3589–3600 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Reyes-Lamothe, R., Sherratt, D. J. & Leake, M. C. Stoichiometry and structure of lively DNA replication equipment in Escherichia coli. Science 328, 498–501 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lau, I. F. et al. Spatial and temporal group of replicating Escherichia coli chromosomes. Mol. Microbiol. 49, 731–743 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Davies, B. W. et al. Hydroxyurea induces hydroxyl radical-mediated cell dying in Escherichia coli. Mol. Cell. 36, 845–860 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Butland, G. et al. Interplay community containing conserved and important protein complexes in Escherichia coli. Nature 433, 531–537 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Arifuzzaman, M. et al. Giant-scale identification of protein-protein interplay of Escherichia coli Ok-12. Genome Res. 16, 686–691 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wu, C. A., Zechner, E. L., Reems, J. A., McHenry, C. S. & Marians, Ok. J. Coordinated leading- and lagging-strand synthesis on the Escherichia coli DNA replication fork. V. Primase motion regulates the cycle of Okazaki fragment synthesis. J. Biol. Chem. 267, 4074–4083 (1992).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Pagès, V. & Fuchs, R. P. Uncoupling of leading- and lagging-strand DNA replication throughout lesion bypass in vivo. Science 300, 1300–1303 (2003).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Kim, S., Dallmann, H. G., McHenry, C. S. & Marians, Ok. J. Coupling of a replicative polymerase and helicase: a tau-DnaB interplay mediates fast replication fork motion. Cell 84, 643–650 (1996).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Marceau, A. H. et al. Construction of the SSB-DNA polymerase III interface and its function in DNA replication. EMBO J. 30, 4236–4247 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Indiani, C., Patel, M., Goodman, M. F. & O’Donnell, M. E. RecA acts as a change to control polymerase occupancy in a transferring replication fork. Proc. Natl Acad. Sci. USA 110, 5410–5415 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ogawa, T. & Okazaki, T. Discontinuous DNA replication. Annu. Rev. Biochem. 49, 421–457 (1980).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wu, C. A., Zechner, E. L. & Marians, Ok. J. Coordinated leading- and lagging-strand synthesis on the Escherichia coli DNA replication fork. I. A number of effectors act to modulate Okazaki fragment dimension. J. Biol. Chem. 267, 4030–4044 (1992).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ikeda, M. et al. DNA polymerase IV mediates environment friendly and fast restoration of replication forks stalled at N2-dG adducts. Nucleic Acids Res. 42, 846-8472 (2014).

  • Yeeles, J. T. P. & Marians, Ok. J. Dynamics of leading-strand lesion skipping by the replisome. Mol. Cell 52, 855–865 (2013).

  • Morimatsu, Ok. & Kowalczykowski, S. C. RecFOR proteins load RecA protein onto gapped DNA to speed up DNA strand alternate: a common step of recombinational restore. Mol. Cell. 11, 1337–1347 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bell, J. C., Plank, J. L., Dombrowski, C. C. & Kowalczykowski, S. C. Direct imaging of RecA nucleation and development on single molecules of SSB-coated ssDNA. Nature 491, 274–278 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Isogawa, A., Ong, J. L., Potapov, V., Fuchs, R. P. & Fujii, S. Pol V-mediated translesion synthesis elicits localized untargeted mutagenesis throughout post-replicative hole restore. Cell Rep. 24, 1290–1300 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Fuchs, R. P. Tolerance of lesions in E. coli: chronological competitors between translesion synthesis and harm avoidance. DNA Restore 44, 51–58 (2016).

  • Marians, Ok. J. Lesion bypass and the reactivation of stalled replication forks. Annu. Rev. Biochem. 87, 217–238 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Fujii, S. & Fuchs, R. P. Defining the place of the switches between replicative and bypass DNA polymerases. EMBO J. 23, 4342–4352 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Jarosz, D. F., Cohen, S. E., Delaney, J. C., Essigmann, J. M. & Walker, G. C. A DinB variant reveals various physiological penalties of incomplete TLS extension by a Y-family DNA polymerase. Proc. Natl Acad. Sci. USA 106, 21137–21142 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Tanner, N. A. et al. Single-molecule research of fork dynamics in Escherichia coli DNA replication. Nat. Struct. Mol. Biol. 15, 170–176 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Pritchard, A. E., Dallmann, H. G., Glover, B. P. & McHenry, C. S. A novel meeting mechanism for the DNA polymerase III holoenzyme DnaX advanced: affiliation of δδ′ with DnaX4 varieties DnaX3δδ′. EMBO J. 19, 6536–6545 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sharan, S. Ok., Thomason, L. C., Kuznetsov, S. G. & Court docket, D. L. Recombineering: a homologous recombination-based technique of genetic engineering. Nat. Protoc. 4, 206–223 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lutz, R. & Bujard, H. Impartial and tight regulation of transcriptional models in Escherichia coli through the LacR/O, the TetR/O and AraC/I1-I2 regulatory components. Nucleic Acids Res. 25, 1203–1210 (1997).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Esnault, E., Valens, M., Espéli, O. & Boccard, F. Chromosome structuring limits genome plasticity in Escherichia coli. PLoS Genet. 3, e226 (2007).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Tokunaga, M., Imamoto, N. & Sakata-Sogawa, Ok. Extremely inclined skinny illumination permits clear single-molecule imaging in cells. Nat. Strategies 5, 159–161 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sliusarenko, O., Heinritz, J., Emonet, T. & Jacobs-Wagner, C. Excessive-throughput, subpixel precision evaluation of bacterial morphogenesis and intracellular spatio-temporal dynamics. Mol. Microbiol. 80, 612–627 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Jaqaman, Ok. et al. Strong single-particle monitoring in live-cell time-lapse sequences. Nat. Strategies 5, 695–702 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Aguet, F., Antonescu, C. N., Mettlen, M., Schmid, S. L. & Danuser, G. Advances in evaluation of low signal-to-noise pictures hyperlink dynamin and AP2 to the features of an endocytic checkpoint. Dev. Cell 26, 279–291 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zawadzki, P. et al. The localization and motion of topoisomerase IV in Escherichia coli chromosome segregation is coordinated by the SMC advanced. Cell Rep. 13, 2587–2596 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Garza de Leon, F., Sellars, L., Stracy, M., Busby, S. J. W. & Kapanidis, A. N. Monitoring low-copy transcription elements in residing micro organism: the case of the lac repressor. Biophys. J. 112, 1316–1327 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Facebook
    Twitter
    Pinterest
    WhatsApp
    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments