Monday, September 26, 2022
HomeMicrobiologyCharacterization and genome evaluation of a psychrophilic methanotroph representing a ubiquitous Methylobacter...

Characterization and genome evaluation of a psychrophilic methanotroph representing a ubiquitous Methylobacter spp. cluster in boreal lake ecosystems

Facebook
Twitter
Pinterest
WhatsApp

  • Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Zhou B, et al. IPCC, 2021: Local weather Change 2021: The Bodily Science Foundation. Contribution of Working Group I to the Sixth Evaluation Report of the Intergovernmental Panel on Local weather Change 2021. Cambridge College Press, Cambridge, United Kingdom and New York, NY, USA. https://doi.org/10.1017/9781009157896.

  • Saunois M, Stavert AR, Poulter B, Bousquet P, Canadell JG, Jackson RB, et al. The worldwide methane finances 2000-2017. Earth Syst Sci Information. 2020;12:1561–623.

    Article 

    Google Scholar 

  • Wik M, Varner RK, Anthony KW, MacIntyre S, Bastviken D. Local weather-sensitive northern lakes and ponds are important parts of methane launch. Nat Geosci. 2016;9:99–105.

    CAS 
    Article 

    Google Scholar 

  • Guo M, Zhuang Q, Tan Z, Shurpali N, Juutinen S, Kortelainen P, et al. Rising methane emissions from boreal lakes attributable to growing ice-free days. Environ Res Lett. 2020;15:064008.

    CAS 
    Article 

    Google Scholar 

  • Matthews E, Johnson MS, Genovese V, Du J, Bastviken D. Methane emission from excessive latitude lakes: methane-centric lake classification and satellite-driven annual cycle of emissions. Sci Rep. 2020;10:12465.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sieczko AK, Duc NT, Schenk J, Pajala G, Rudberg D, Sawakuchi HO, et al. Diel variability of methane emissions from lakes. Proc Natl Acad Sci USA 2020;117:21488–94.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rissanen AJ, Saarela T, Jäntti H, Buck M, Peura S, Aalto SL, et al. Vertical stratification patterns of methanotrophs and their genetic controllers in water columns of oxygen-stratified boreal lakes. FEMS Microbiol Ecol. 2021; https://doi.org/10.1093/femsec/fiaa252.

  • Rissanen AJ, Saarenheimo J, Tiirola M, Peura S, Aalto SL, Karvinen A, et al. Gammaproteobacterial methanotrophs dominate methanotrophy in cardio and anaerobic layers of boreal lake waters. Aquat Microb Ecol. 2018;81:257–76.

    Article 

    Google Scholar 

  • Samad MS, Bertilsson S. Seasonal variation in abundance and variety of bacterial methanotrophs in 5 temperate lakes. Entrance Microbiol. 2017;8:142.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Smith GJ, Angle JC, Solden LM, Borton MA, Morin TH, Daly RA, et al. Members of the Genus Methylobacter Are Inferred To Account for the Majority of Cardio Methane Oxidation in Oxic Soils from a Freshwater Wetland. MBio. 2018;10 .1128/mBio.00815−18.

  • van Grinsven S, Oswald Okay, Wehrli B, Jegge C, Zopfi J, Lehmann MF, et al. Methane oxidation within the waters of a humic-rich boreal lake stimulated by photosynthesis, nitrite, Fe(III) and humics. Biogeosciences. 2021;18:3087–101.

    Article 
    CAS 

    Google Scholar 

  • Kalyuzhnaya MG, Yang S, Rozova ON, Smalley NE, Clubb J, Lamb A, et al. Extremely environment friendly methane biocatalysis revealed in a methanotrophic bacterium. Nat Commun. 2013;4:2785.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kits KD, Klotz MG, Stein LY. Methane oxidation coupled to nitrate discount below hypoxia by the Gammaproteobacterium Methylomonas denitrificans, sp. nov. kind pressure FJG1. Environ Microbiol. 2015;17:3219–32.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ho A, de Roy Okay, Thas O, De Neve J, Hoefman S, Vandamme P, et al. The extra, the merrier: heterotroph richness stimulates methanotrophic exercise. ISME J. 2014;8:1945–8.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Krause SMB, Johnson T, Karunaratne YS, Fu Y, Beck DAC, Chistoserdova L, et al. Lanthanide-dependent cross-feeding of methane-derived carbon is linked by microbial group interactions. Proc Natl Acad Sci USA 2017;114:358–63.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Khanongnuch R, Mangayil R, Santala V, Grethe Hestnes A, Marianne Svenning M, Rissanen AJ. Batch Experiments Demonstrating a Two-Stage Bacterial Course of Coupling Methanotrophic and Heterotrophic Micro organism for 1-Alkene Manufacturing From Methane. Entrance Microbiol. 2022;13:874627.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pieja AJ, Morse MC, Cal AJ. Methane to bioproducts: the way forward for the bioeconomy? Curr Opin Chem Biol. 2017;41:123–31.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sturdy PJ, Xie S, Clarke WP. Methane as a Useful resource: Can the Methanotrophs Add worth? Environ Sci Technol. 2015;49:4001–18.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • van Grinsven S, Sinninghe Damsté JS, Harrison J, Polerecky L, Villanueva L. Nitrate promotes the switch of methane-derived carbon from the methanotroph Methylobacter sp. to the methylotroph Methylotenera sp. in eutrophic lake water. Limnol Oceanogr. 2021;66:878–91.

    Article 
    CAS 

    Google Scholar 

  • Bertoldo C, Grote R, Antranikian G. Extremophiles: Life in Excessive Environments. In: Bitton G, editor. Encyclopedia of Environmental Microbiology.2003. https://doi.org/10.1002/0471263397.env099.

  • Trotsenko YA, Khmelenina VN. Cardio methanotrophic micro organism of chilly ecosystems. FEMS Microbiol. Ecol. 2005;53:15–26.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Rissanen AJ, Mangayil R, Svenning MM, Khanongnuch R. Draft genome sequence information of methanotrophic Methylovulum psychrotolerans pressure S1L and Methylomonas paludis pressure S2AM remoted from hypoxic water column layers of boreal lakes. Information Br. 2021;38:107364.

    CAS 
    Article 

    Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura Okay. MEGA X: Molecular Evolutionary Genetics Evaluation Throughout Computing Platforms. Mol Biol Evol. 2018;35:1547–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Buck M, Garcia SL, Fernandez L, Martin G, Martinez-Rodriguez GA, Saarenheimo J, et al. Complete dataset of shotgun metagenomes from oxygen stratified freshwater lakes and ponds. Sci Information. 2021;8:131.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • van Grinsven S, Sinninghe Damsté JS, Abdala Asbun A, Engelmann JC, Harrison J, Villanueva L. Methane oxidation in anoxic lake water stimulated by nitrate and sulfate addition. Environ Microbiol. 2020;22:766–82.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Seemann T. Barrnap: Primary speedy ribosomal RNA predictor. 2014. https://github.com/tseemann/barrnap.

  • Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial genome assemblies from quick and lengthy sequencing reads. PLoS Comput Biol. 2017; https://doi.org/10.1371/journal.pcbi.1005595.

  • Li W, O’Neill KR, Haft DH, DiCuccio M, Chetvernin V, Badretdin A, et al. RefSeq: increasing the Prokaryotic Genome Annotation Pipeline attain with protein household mannequin curation. Nucleic Acids Res. 2021;49:D1020–D1028.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Haft DH, DiCuccio M, Badretdin A, Brover V, Chetvernin V, O’Neill Okay, et al. RefSeq: an replace on prokaryotic genome annotation and curation. Nucleic Acids Res. 2018;46:D851–D860.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Tatusova T, Dicuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016;44:6614–24.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kanehisa M, Sato Y, Kawashima M. KEGG mapping instruments for uncovering hidden options in organic information. Protein Sci. 2022;31:47–53.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo Okay, Kanehisa M, Goto S, et al. KofamKOALA: KEGG Ortholog project based mostly on profile HMM and adaptive rating threshold. Bioinformatics. 2020;36:2251–2.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Asnicar F, Thomas AM, Beghini F, Mengoni C, Manara S, Manghi P, et al. Exact phylogenetic evaluation of microbial isolates and genomes from metagenomes utilizing PhyloPhlAn 3.0. Nat Commun. 2020;11:2500.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Stamatakis A. RAxML model 8: a device for phylogenetic evaluation and post-analysis of enormous phylogenies. Bioinformatics. 2014;30:1312–3.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Seemann T. Prokka: speedy prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. Excessive throughput ANI evaluation of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018;9:5114.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Meier-Kolthoff JP, Göker M. TYGS is an automatic high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun. 2019;10:2182.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Okonkwo O, Lakaniemi A-M, Santala V, Karp M, Mangayil R. Quantitative real-time PCR monitoring dynamics of Thermotoga neapolitana in artificial co-culture for biohydrogen manufacturing. Int J Hydrogen Vitality. 2018;43:3133–41.

    CAS 
    Article 

    Google Scholar 

  • Masuko T, Minami A, Iwasaki N, Majima T, Nishimura S-I, Lee YC. Carbohydrate evaluation by a phenol-sulfuric acid technique in microplate format. Anal Biochem. 2005;339:69–72.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Omel’chenko MV, Vasil’eva LV, Zavarzin GA, Savel’eva ND, Lysenko AM, Mityushina LL, et al. A Novel Psychrophilic Methanotroph of the Genus Methylobacter. Microbiol. 1996;65:339–43.

    Google Scholar 

  • Wartiainen I, Hestnes AG, McDonald IR, Svenning MM. Methylobacter tundripaludum sp. nov., a methane-oxidizing bacterium from Arctic wetland soil on the Svalbard islands, Norway (78° N). Int J Syst Evol Microbiol. 2006;56:109–13.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol. 2007;57:81–91.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Khatri Okay, Mohite J, Pandit P, Bahulikar RA, Rahalkar MC. Isolation, Description and Genome Evaluation of a Putative Novel Methylobacter Species (‘Ca. Methylobacter coli’) Remoted from the Faeces of a Blackbuck (Indian Antelope). Microbiol Res. 2021;12:513–23.

    Article 

    Google Scholar 

  • Kim M, Oh HS, Park SC, Chun J. In the direction of a taxonomic coherence between common nucleotide identification and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol. 2014;64:346–51.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Luo C, Rodriguez-R LM, Konstantinidis KT. MyTaxa: A sophisticated taxonomic classifier for genomic and metagenomic sequences. Nucleic Acids Res. 2014; https://doi.org/10.1093/nar/gku169.

  • Orata FD, Meier-Kolthoff JP, Sauvageau D, Stein LY. Phylogenomic Evaluation of the Gammaproteobacterial Methanotrophs (order Methylococcales) Requires the Reclassification of Members on the Genus and Species Ranges. Entrance Microbiol. 2018;9:3162.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold requirements. Microbiol Right now. 2006;33:152–5.

    Google Scholar 

  • Mohammadi SS, Pol A, van Alen T, Jetten MSM, Op den Camp HJM. Ammonia Oxidation and Nitrite Discount within the Verrucomicrobial Methanotroph Methylacidiphilum fumariolicum SolV. Entrance Microbiol. 2017;8:1901.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Versantvoort W, Pol A, M Jetten MS, Van NL, Reimann J, Kartal B, et al. Multiheme hydroxylamine oxidoreductases produce NO throughout ammonia oxidation in methanotrophs. Proc Natl Acad Sci USA 2020;117:24459–63.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Cabrol L, Thalasso F, Gandois L, Sepulveda-Jauregui A, Martinez-Cruz Okay, Teisserenc R, et al. Anaerobic oxidation of methane and related microbiome in anoxic water of Northwestern Siberian lakes. Sci Whole Environ. 2020;736:139588.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cassarini C, Rene ER, Bhattarai S, Vogt C, Musat N, Lens PNL. Anaerobic methane oxidation coupled to sulfate discount in a biotrickling filter: Reactor efficiency and microbial group evaluation. Chemosphere. 2019;236:124290.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Martin G, Rissanen AJ, Garcia SL, Mehrshad M, Buck M, Peura S. Candidatus Methylumidiphilus Drives Peaks in Methanotrophic Relative Abundance in Stratified Lakes and Ponds Throughout Northern Landscapes. Entrance Microbiol. 2021;12:669937.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lee OK, Hur DH, Nguyen DTN, Lee EY. Metabolic engineering of methanotrophs and its software to manufacturing of chemical substances and biofuels from methane. Biofuels Bioprod Biorefining. 2016;10:848–63.

    CAS 
    Article 

    Google Scholar 

  • Gilman A, Fu Y, Hendershott M, Chu F, Puri AW, Smith AL, et al. Oxygen-limited metabolism within the methanotroph Methylomicrobium buryatense 5GB1C. PeerJ. 2017; https://doi.org/10.5281/zenodo.842900.

  • Gilman A, Laurens LM, Puri AW, Chu F, Pienkos PT, Lidstrom ME. Bioreactor efficiency parameters for an industrially-promising methanotroph Methylomicrobium buryatense 5GB1. Microb Cell Reality. 2015;14:182.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Schäfer T, Selig M, Schönheit P. Acetyl-CoA synthetase (ADP forming) in archaea, a novel enzyme concerned in acetate formation and ATP synthesis. Arch Microbiol. 1993;159:72–83.

    Article 

    Google Scholar 

  • Baleeiro FCF, Ardila MS, Kleinsteuber S, Sträuber H. Impact of Oxygen Contamination on Propionate and Caproate Formation in Anaerobic Fermentation. Entrance Bioeng Biotechnol. 2021;9:725443.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gonzalez-Garcia RA, McCubbin T, Navone L, Stowers C, Nielsen LK, Marcellin E. Microbial propionic acid manufacturing. Fermentation. 2017;3:21.

    Article 
    CAS 

    Google Scholar 

  • Moreira JPC, Diender M, Arantes AL, Boeren S, Stams AJM, Alves MM, et al. Propionate Manufacturing from Carbon Monoxide by Artificial Cocultures of Acetobacterium wieringae and Propionigenic Micro organism. Appl Environ Microbiol. 2021; https://doi.org/10.1128/AEM.02839-20.

  • Tays C, Guarnieri MT, Sauvageau D, Stein LY. Mixed Results of Carbon and Nitrogen Supply to Optimize Development of Proteobacterial Methanotrophs. Entrance Microbiol. 2018;9:2239.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hanson RS, Hanson TE. Methanotrophic Micro organism. Microbiol Rev. 1996;60:439–71.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kutvonen H, Rajala P, Carpén L, Bomberg M. Nitrate and ammonia as nitrogen sources for deep subsurface microorganisms. Entrance Microbiol. 2015;6:1079.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Fei Q, Puri AW, Smith H, Dowe N, Pienkos PT. Enhanced organic fixation of methane for microbial lipid manufacturing by recombinant Methylomicrobium buryatense. Biotechnol Biofuels. 2018;11:129.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Nguyen AD, Lee EY. Engineered Methanotrophy: a Sustainable Resolution for Methane-Primarily based Industrial Biomanufacturing. Traits Biotechnol. 2021;39:381–96.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kankaala P, Huotari J, Peltomaa E, Saloranta T, Ojala A. Methanotrophic exercise in relation to methane efflux and whole heterotrophic bacterial manufacturing in a stratified, humic, boreal lake. Limno Oceanogr. 2006;51:1195–204.

    CAS 
    Article 

    Google Scholar 

  • Lee H, Baek JI, Lee JY, Jeong J, Kim H, Lee DH, et al. Syntrophic co-culture of a methanotroph and heterotroph for the environment friendly conversion of methane to mevalonate. Metab Eng. 2021;67:285–92.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Takeuchi M, Yoshioka H. Acetate excretion by a methanotroph, Methylocaldum marinum S8, below cardio situations. Biosci Biotechnol Biochem. 2021;85:2326–33.

    PubMed 
    Article 

    Google Scholar 

  • Bowman JP, McCammon SA, Skerratt JH. Methylosphaera hansonii gen. nov., sp. nov., a psychrophilic, group I methanotroph from Antarctic marine-salinity, meromictic lakes. Microbiology. 1997;143:1451–9.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Facebook
    Twitter
    Pinterest
    WhatsApp
    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments