Monday, September 26, 2022
HomeBiochemistryBud31-mediated various splicing is required for spermatogonial stem cell self-renewal and differentiation

Bud31-mediated various splicing is required for spermatogonial stem cell self-renewal and differentiation

Facebook
Twitter
Pinterest
WhatsApp

  • Track HW, Bettegowda A, Lake BB, Zhao AH, Skarbrevik D, Babajanian E, et al. The homeobox transcription issue RHOX10 drives mouse spermatogonial stem cell institution. Cell Rep. 2016;17:149–64.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Krawetz SA, De Rooij DG, Hedger MP. Molecular points of male fertility. Worldwide Workshop on Molecular Andrology. EMBO Rep. 2009;10:1087–92.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Feng LX, Chen Y, Dettin L, Pera RA, Herr JC, Goldberg E, et al. Era and in vitro differentiation of a spermatogonial cell line. Science. 2002;297:392–5.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Oatley JM, Brinster RL. Regulation of spermatogonial stem cell self-renewal in mammals. Annu Rev Cell Dev Biol. 2008;24:263–86.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Track HW, Wilkinson MF. Transcriptional management of spermatogonial upkeep and differentiation. Semin Cell Dev Biol. 2014;30:14–26.

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Jung H, Track H, Yoon M. The KIT is a putative marker for differentiating spermatogonia in stallions. Anim Reprod Sci. 2015;152:39–46.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Liu MM, Zack DJ. Different splicing and retinal degeneration. Clin Genet. 2013;84:142–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Baralle FE, Giudice J. Different splicing as a regulator of improvement and tissue id. Nat Rev Mol Cell Biol. 2017;18:437–51.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zhang X, Ameer FS, Azhar G, Wei JY. Different Splicing Will increase Sirtuin Gene Household Variety and Modulates Their Subcellular Localization and Operate. Int J Mol Sci. 2021;22:E473.

  • de la Grange P, Gratadou L, Delord M, Dutertre M, Auboeuf D. Splicing issue and exon profiling throughout human tissues. Nucleic Acids Res. 2010;38:2825–38.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Scotti MM, Swanson MS. RNA mis-splicing in illness. Nat Rev Genet. 2016;17:19–32.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Havens MA, Duelli DM, Hastings ML. Focusing on RNA splicing for illness remedy. Wiley Interdiscip Rev RNA. 2013;4:247–66.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Legrand JMD, Chan AL, La HM, Rossello FJ, Anko ML, Fuller-Tempo FV, et al. DDX5 performs important transcriptional and post-transcriptional roles within the upkeep and performance of spermatogonia. Nat Commun. 2019;10:2278.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Liu W, Wang F, Xu Q, Shi J, Zhang X, Lu X, et al. BCAS2 is concerned in various mRNA splicing in spermatogonia and the transition to meiosis. Nat Commun. 2017;8:14182.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sada A, Suzuki A, Suzuki H, Saga Y. The RNA-binding protein NANOS2 is required to keep up murine spermatogonial stem cells. Science. 2009;325:1394–8.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bai R, Wan R, Wang L, Xu Ok, Zhang Q, Lei J, et al. Construction of the activated human minor spliceosome. Science. 2021;371:eabg0879.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hsu TY, Simon LM, Neill NJ, Marcotte R, Sayad A, Bland CS, et al. The spliceosome is a therapeutic vulnerability in MYC-driven most cancers. Nature. 2015;525:384–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Masciadri B, Areces LB, Carpinelli P, Foiani M, Draetta G, Fiore F. Characterization of the BUD31 gene of Saccharomyces cerevisiae. Biochem Biophys Res Commun. 2004;320:1342–50.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cardoso-Moreira M, Halbert J, Valloton D, Velten B, Chen C, Shao Y, et al. Gene expression throughout mammalian organ improvement. Nature. 2019;571:505–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Saha D, Banerjee S, Bashir S, Vijayraghavan U. Context dependent splicing features of Bud31/Ycr063w outline its position in budding and cell cycle development. Biochem Biophys Res Commun. 2012;424:579–85.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Costoya JA, Hobbs RM, Barna M, Cattoretti G, Manova Ok, Sukhwani M, et al. Important position of Plzf in upkeep of spermatogonial stem cells. Nat Genet. 2004;36:653–9.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kanatsu-Shinohara M, Shinohara T. Spermatogonial stem cell self-renewal and improvement. Annu Rev Cell Dev Biol. 2013;29:163–87.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ferder IC, Fung L, Ohguchi Y, Zhang X, Lassen KG, Capen D, et al. Meiotic gatekeeper STRA8 suppresses autophagy by repressing Nr1d1 expression throughout spermatogenesis in mice. PLoS Genet. 2019;15:e1008084.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Anderson EL, Baltus AE, Roepers-Gajadien HL, Hassold TJ, de Rooij DG, van Pelt AM, et al. Stra8 and its inducer, retinoic acid, regulate meiotic initiation in each spermatogenesis and oogenesis in mice. Proc Natl Acad Sci USA. 2008;105:14976–80.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hogarth CA, Griswold MD. The important thing position of vitamin A in spermatogenesis. J Clin Make investments. 2010;120:956–62.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Nagaoka SI, Nakaki F, Miyauchi H, Nosaka Y, Ohta H, Yabuta Y, et al. ZGLP1 is a determinant for the oogenic destiny in mice. Science. 2020;367:aaw4115.

    Article 
    CAS 

    Google Scholar 

  • Barrios F, Filipponi D, Campolo F, Gori M, Bramucci F, Pellegrini M, et al. SOHLH1 and SOHLH2 management Equipment expression throughout postnatal male germ cell improvement. J Cell Sci. 2012;125:1455–64.

    CAS 
    PubMed 

    Google Scholar 

  • Xu Ok, Yang Y, Feng GH, Solar BF, Chen JQ, Li YF, et al. Mettl3-mediated m(6)A regulates spermatogonial differentiation and meiosis initiation. Cell Res. 2017;27:1100–14.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Singh P, Patel RK, Palmer N, Grenier JK, Paduch D, Kaldis P, et al. CDK2 kinase exercise is a regulator of male germ cell destiny. Improvement. 2019;146:dev180273.

  • Schmitz U, Pinello N, Jia F, Alasmari S, Ritchie W, Keightley MC, et al. Intron retention enhances gene regulatory complexity in vertebrates. Genome Biol. 2017;18:216.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Li Y, Li C, Lin S, Yang B, Huang W, Wu H, et al. A nonsense mutation in Ccdc62 gene is liable for spermiogenesis defects and male infertility in repro29/repro29 mice. Biol Reprod. 2017;96:587–97.

    PubMed 
    Article 

    Google Scholar 

  • Mylonis I, Drosou V, Brancorsini S, Nikolakaki E, Sassone-Corsi P, Giannakouros T. Temporal affiliation of protamine 1 with the interior nuclear membrane protein lamin B receptor throughout spermiogenesis. J Biol Chem. 2004;279:11626–31.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Schmid R, Grellscheid SN, Ehrmann I, Dalgliesh C, Danilenko M, Paronetto MP, et al. The splicing panorama is globally reprogrammed throughout male meiosis. Nucleic Acids Res. 2013;41:10170–84.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • O’Bryan MK, Clark BJ, McLaughlin EA, D’Sylva RJ, O’Donnell L, Wilce JA, et al. RBM5 is a male germ cell splicing issue and is required for spermatid differentiation and male fertility. PLoS Genet. 2013;9:e1003628.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Zagore LL, Grabinski SE, Candy TJ, Hannigan MM, Sramkoski RM, Li Q, et al. RNA binding protein Ptbp2 is important for male germ cell improvement. Mol Cell Biol. 2015;35:4030–42.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Nakagawa T, Zhang T, Kushi R, Nakano S, Endo T, Nakagawa M, et al. Regulation of mitosis-meiosis transition by the ubiquitin ligase beta-TrCP in male germ cells. Improvement. 2017;144:4137–47.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lin Y, Gill ME, Koubova J, Web page DC. Germ cell-intrinsic and -extrinsic elements govern meiotic initiation in mouse embryos. Science. 2008;322:1685–7.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ishiguro KI, Matsuura Ok, Tani N, Takeda N, Usuki S, Yamane M, et al. MEIOSIN directs the swap from mitosis to meiosis in mammalian germ cells. Dev Cell. 2020;52:429–45.e410.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Matson CK, Murphy MW, Griswold MD, Yoshida S, Bardwell VJ, Zarkower D. The mammalian doublesex homolog DMRT1 is a transcriptional gatekeeper that controls the mitosis versus meiosis resolution in male germ cells. Dev Cell. 2010;19:612–24.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Suzuki A, Saga Y. Nanos2 suppresses meiosis and promotes male germ cell differentiation. Genes Dev. 2008;22:430–5.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Picelli S. Full-length single-cell RNA sequencing with smart-seq2. Strategies Mol Biol. 2019;1979:25–44.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Faber EB, Wang N, Georg GI. Assessment of rationale and progress towards focusing on cyclin-dependent kinase 2 (CDK2) for male contraceptiondagger. Biol Reprod. 2020;103:357–67.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ortega S, Prieto I, Odajima J, Martin A, Dubus P, Sotillo R, et al. Cyclin-dependent kinase 2 is important for meiosis however not for mitotic cell division in mice. Nat Genet. 2003;35:25–31.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Berthet C, Aleem E, Coppola V, Tessarollo L, Kaldis P. Cdk2 knockout mice are viable. Curr Biol. 2003;13:1775–85.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kwon TK, Buchholz MA, Jun DY, Kim YH, Nordin AA. The differential catalytic exercise of alternatively spliced cdk2 alpha and cdk2 beta within the G1/S transition and early S part. Exp Cell Res. 1998;238:128–35.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Modzelewski AJ, Shao W, Chen J, Lee A, Qi X, Midday M, et al. A mouse-specific retrotransposon drives a conserved Cdk2ap1 isoform important for improvement. Cell. 2021;184:5541–58.e5522.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lin Z, Hsu PJ, Xing X, Fang J, Lu Z, Zou Q, et al. Mettl3-/Mettl14-mediated mRNA N(6)-methyladenosine modulates murine spermatogenesis. Cell Res. 2017;27:1216–30.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Chen Y, Lyu R, Rong B, Zheng Y, Lin Z, Dai R, et al. Refined spatial temporal epigenomic profiling reveals intrinsic connection between PRDM9-mediated H3K4me3 and the destiny of double-stranded breaks. Cell Res. 2020;30:256–68.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Huang T, Yuan S, Gao L, Li M, Yu X, Zhan J, et al. The histone modification reader ZCWPW1 hyperlinks histone methylation to PRDM9-induced double-strand break restore. Elife. 2020;9:e53459.

  • Picelli S, Faridani OR, Bjorklund AK, Winberg G, Sagasser S, Sandberg R. Full-length RNA-seq from single cells utilizing Good-seq2. Nat Protoc. 2014;9:171–81.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Shen S, Park JW, Lu ZX, Lin L, Henry MD, Wu YN, et al. rMATS: sturdy and versatile detection of differential various splicing from replicate RNA-Seq knowledge. Proc Natl Acad Sci USA. 2014;111:E5593–601.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Florea L, Track L, Salzberg SL. 1000’s of exon skipping occasions differentiate amongst splicing patterns in sixteen human tissues. F1000Res. 2013;2:188.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Li Y, Zhao DY, Greenblatt JF, Zhang Z. RIPSeeker: a statistical bundle for figuring out protein-associated transcripts from RIP-seq experiments. Nucleic Acids Res. 2013;41:e94.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Easy mixtures of lineage-determining transcription elements prime cis-regulatory parts required for macrophage and B cell identities. Mol Cell. 2010;38:576–89.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Machanick P, Bailey TL. MEME-ChIP: motif evaluation of enormous DNA datasets. Bioinformatics. 2011;27:1696–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Facebook
    Twitter
    Pinterest
    WhatsApp
    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments