Wednesday, September 28, 2022
HomeChemistryA proposed synergetic mechanism for metallic fume fever involving ZnO and Fe3O4...

A proposed synergetic mechanism for metallic fume fever involving ZnO and Fe3O4 nanoparticles

Facebook
Twitter
Pinterest
WhatsApp

  • Wong, A., Greene, S. & Robinson, J. Metallic fume fever – a case overview of calls made to the Victorian Poisons Info Centre. Aust. Fam. Doctor 41(3), 141–143 (2012).

    PubMed 

    Google Scholar 

  • Antonini, J. M., Lewis, A. B., Roberts, J. R. & Whaley, D. A. Pulmonary results of welding fumes: Assessment of employee and experimental animal research. Am. J. Ind. Med. 43(4), 350–360 (2003).

    CAS 
    Article 

    Google Scholar 

  • Greenberg, M. I. & Vearrier, D. Metallic fume fever and polymer fume fever. Clin. Toxicol. 53(4), 195–203 (2015).

    CAS 
    Article 

    Google Scholar 

  • Okuno, T. Measurement of ultraviolet radiation from welding arcs. Ind. Well being 25(3), 147–156 (1987).

    CAS 
    Article 

    Google Scholar 

  • Takahashi, J., Nakashima, H., Fujii, N. & Okuno, T. Complete evaluation of hazard of ultraviolet radiation emitted throughout arc welding of forged iron. J. Occup. Well being 62(1), e12091 (2020).

    CAS 
    Article 

    Google Scholar 

  • Moroni, B. & Viti, C. Grain dimension, chemistry, and construction of positive and ultrafine particles in stainless-steel welding fumes. J. Aerosol. Sci. 40(11), 938–949 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • ATSDR. Toxicological profile for Zinc. Artlanta: Public Well being Service (2005).

  • Monsé, C. et al. Well being results after inhalation of micro- and nano-sized zinc oxide particles in human volunteers. Arch Toxicol. 95(1), 53–65 (2021).

    Article 

    Google Scholar 

  • Beckett, W. S. et al. Evaluating inhaled ultrafine versus positive
    zinc oxide particles in wholesome adults: A human inhalation examine. American journal of respiratory and demanding care medication 171, 1129–1135 (2005).

  • Palmer, Ok. T. et al. Inflammatory responses to the occupational
    inhalation of metallic fume. Eur. Respir. J. 27, 366–373 (2006).

  • Wardhana, W. & Datau, E. A. Metallic fume fever amongst galvanized welders. Acta Med. Indonesiana 46(3), 256–262 (2014).

    CAS 

    Google Scholar 

  • Kuschner, W. G., D’Alessandro, A., Wong, H. & Blanc, P. D. Early pulmonary cytokine responses to zinc oxide fume inhalation. Environ. Res. 75(1), 7–11 (1997).

    CAS 
    Article 

    Google Scholar 

  • Arangio, A. M., Tong, H., Socorro, J., Pöschl, U. & Shiraiwa, M. Quantification of environmentally persistent free radicals and reactive oxygen species in atmospheric aerosol particles. Atmos. Chem. Phys. 16(20), 13105–13119 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • See, S. W., Wang, Y. H. & Balasubramanian, R. Contrasting reactive oxygen species and transition metallic concentrations in combustion aerosols. Environ. Res. 103(3), 317–324 (2007).

    CAS 
    Article 

    Google Scholar 

  • Ma, S. et al. Manufacturing of hydroxyl radicals from Fe-containing positive particles in Guangzhou, China. Atmos. Environ. 123, 72–78 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Tony, M. A., Zhao, Y. Q. & Tayeb, A. M. Exploitation of Fenton and Fenton-like reagents as different conditioners for alum sludge conditioning. J. Environ. Sci. (China) 21(1), 101–105 (2009).

    CAS 
    Article 

    Google Scholar 

  • Lenzen, S., Lushchak, V. I. & Scholz, F. The professional-radical hydrogen peroxide as a steady hydroxyl radical distributor: Classes from pancreatic beta cells. Arch. Toxicol. 96(7), 1915–1920 (2022).

    CAS 
    Article 

    Google Scholar 

  • Ong, C. B., Ng, L. Y. & Mohammad, A. W. A overview of ZnO nanoparticles as photo voltaic photocatalysts: Synthesis, mechanisms and purposes. Renew. Maintain. Vitality Rev. 81, 536–551 (2018).

    CAS 
    Article 

    Google Scholar 

  • Salem, I. A. Kinetics of the oxidative colour elimination and degradation of bromophenol blue with hydrogen peroxide catalyzed by copper(II)-supported alumina and zirconia. Appl. Catal. B 28(3), 153–162 (2000).

    CAS 
    Article 

    Google Scholar 

  • Kamarulzaman, N., Kasim, M. F. & Rusdi, R. Band Hole Narrowing and Widening of ZnO Nanostructures and Doped Supplies. Nanoscale Res. Lett. 10(1), 1034 (2015).

    Article 

    Google Scholar 

  • Borysiewicz, M. A. ZnO as a useful materials, a overview. Curr. Comput.-Aided Drug Des. 9(10), 505 (2019).

    CAS 

    Google Scholar 

  • Geurts, J. Crystal Construction, Chemical Binding, and Lattice Properties. In: Klingshirn CF, Meyer BK, Waag A, Hoffmann A, Geurts J, editors. Zinc Oxide: From Elementary Properties In the direction of Novel Functions. Berlin, Heidelberg: Springer Berlin Heidelberg, p. 7–37 (2010).

  • Espitia, P. J. P. et al. Zinc oxide nanoparticles: Synthesis, antimicrobial exercise and meals packaging purposes. Meals Bioprocess Technol. 5(5), 1447–1464 (2012).

    CAS 
    Article 

    Google Scholar 

  • Gaderbauer, W. et al. Results of alloying parts on floor oxides of sizzling–dip galvanized press hardened metal. Surf. Coat. Technol. 404, 126466 (2020).

    CAS 
    Article 

    Google Scholar 

  • Moezzi, A., McDonagh, A. M. & Cortie, M. B. Zinc oxide particles: Synthesis, properties and purposes. Chem. Eng. J. 185–186, 1–22 (2012).

    Article 

    Google Scholar 

  • Vernez, D. et al. Airborne nano-TiO 2 particles: An innate or environmentally-induced toxicity?. J. Photochem. Photobiol., A 343, 119–125 (2017).

    CAS 
    Article 

    Google Scholar 

  • Bai, C. et al. Environment friendly decolorization of Malachite Inexperienced within the Fenton response catalyzed by [Fe(III)-salen]Cl advanced. Chem. Eng. J. 215–216, 227–234 (2013).

    Article 

    Google Scholar 

  • Ren, H., He, F., Liu, S., Li, T. & Zhou, R. Enhancing Fenton-like course of at impartial pH by Fe(III)-GLDA complexation for the oxidation elimination of natural pollution. J. Hazard Mater. 416, 126077 (2021).

    CAS 
    Article 

    Google Scholar 

  • Pignatello, J. J., Oliveros, E. & MacKay, A. Superior oxidation processes for natural contaminant destruction primarily based on the fenton response and associated chemistry. Crit. Rev. Environ. Sci. Technol. 36(1), 1–84 (2006).

    CAS 
    Article 

    Google Scholar 

  • Zhang, Y. & Zhou, M. A essential overview of the appliance of chelating brokers to allow Fenton and Fenton-like reactions at excessive pH values. J. Hazard Mater. 362, 436–450 (2019).

    CAS 
    Article 

    Google Scholar 

  • Miller, C. J., Rose, A. L. & Waite, T. D. Significance of Iron complexation for Fenton-mediated hydroxyl radical manufacturing at circumneutral pH. Entrance. Mar. Sci. https://doi.org/10.3389/fmars.2016.00134 (2016).

    Article 

    Google Scholar 

  • Yan, H. et al. Influences of various synthesis circumstances on properties of Fe3O4 nanoparticles. Mater. Chem. Phys. 113(1), 46–52 (2009).

    CAS 
    Article 

    Google Scholar 

  • Xu, L. & Wang, J. Fenton-like degradation of two,4-dichlorophenol utilizing Fe3O4 magnetic nanoparticles. Appl. Catal. B 123–124, 117–126 (2012).

    Google Scholar 

  • Ben Hafaiedh, N., Fourcade, F., Bellakhal, N. & Amrane, A. Iron oxide nanoparticles as heterogeneous electro-Fenton catalysts for the elimination of AR18 azo dye. Environ. Technol. 41(16), 2146–2153 (2020).

    CAS 
    Article 

    Google Scholar 

  • Fang, G. D., Zhou, D. M. & Dionysiou, D. D. Superoxide mediated manufacturing of hydroxyl radicals by magnetite nanoparticles: Demonstration within the degradation of 2-chlorobiphenyl. J. Hazard Mater. 250–251, 68–75 (2013).

    Article 

    Google Scholar 

  • Garrido-Ramírez, E. G., Theng, B. Ok. G. & Mora, M. L. Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions — A overview. Appl. Clay Sci. 47(3), 182–192 (2010).

    Article 

    Google Scholar 

  • Solar, S.-P. & Lemley, A. T. p-Nitrophenol degradation by a heterogeneous Fenton-like response on nano-magnetite: Course of optimization, kinetics, and degradation pathways. J. Mol. Catal. A: Chem. 349(1), 71–79 (2011).

    CAS 
    Article 

    Google Scholar 

  • Qu, W. et al. Electron-rich/poor response websites allow ultrafast confining Fenton-like processes in facet-engineered BiOI membranes for water purification. Appl. Catal. B 304, 120970 (2022).

    CAS 
    Article 

    Google Scholar 

  • Laulagnet, A., Sauvain, J. J., Concha-Lozano, N., Riediker, M. & Suárez, G. Delicate photonic system to measure oxidative potential of airborne nanoparticles and ROS ranges in exhaled air. Procedia Eng. 120, 632–636 (2015).

    CAS 
    Article 

    Google Scholar 

  • Facebook
    Twitter
    Pinterest
    WhatsApp
    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments