Friday, September 30, 2022
HomeBiochemistryA fungal tolerance trait and selective inhibitors proffer HMG-CoA reductase as a...

A fungal tolerance trait and selective inhibitors proffer HMG-CoA reductase as a herbicide mode-of-action

Facebook
Twitter
Pinterest
WhatsApp

  • Heap, I. The worldwide survey of herbicide resistant weeds. Accessed 1 Could 2022. https://www.weedscience.org (2022).

  • Shino, M., Hamada, T., Shigematsu, Y., Hirase, Ok. & Banba, S. Motion mechanism of bleaching herbicide cyclopyrimorate, a novel homogentisate solanesyltransferase inhibitor. J. Pestic. Sci. 43, 233–239 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ferhatoglu, Y. & Barrett, M. Research of clomazone mode of motion. Pestic. Biochem. Physiol. 85, 7–14 (2006).

    CAS 
    Article 

    Google Scholar 

  • Lange, B. M., Rujan, T., Martin, W. & Croteau, R. Isoprenoid biosynthesis: the evolution of two historical and distinct pathways throughout genomes. Proc. Natl Acad. Sci. USA 97, 13172–13177 (2000).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Summons, R. E., Jahnke, L. L., Hope, J. M. & Logan, G. A. 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400, 554–557 (1999).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Brocks, J. J., Logan, G. A., Buick, R. & Summons, R. E. Archean molecular fossils and the early rise of eukaryotes. Science 285, 1033–1036 (1999).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Vranová, E., Coman, D. & Gruissem, W. Community evaluation of the MVA and MEP pathways for isoprenoid synthesis. Annu. Rev. Plant Biol. 64, 665–700 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Rodriéguez-Concepcioén, M. et al. Distinct light-mediated pathways regulate the biosynthesis and alternate of isoprenoid precursors throughout Arabidopsis seedling growth. Plant Cell 16, 144–156 (2004).

    Article 

    Google Scholar 

  • Hemmerlin, A. et al. Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco vibrant yellow-2 cells. J. Biol. Chem. 278, 26666–26676 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Laule, O. et al. Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 100, 6866–6871 (2003).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Nagata, N., Suzuki, M., Yoshida, S. & Muranaka, T. Mevalonic acid partially restores chloroplast and etioplast growth in Arabidopsis missing the non-mevalonate pathway. Planta 216, 345–350 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hoshino, Y. & Gaucher, E. A. On the origin of isoprenoid biosynthesis. Mol. Biol. Evolution 35, 2185–2197 (2018).

    CAS 
    Article 

    Google Scholar 

  • Zeng, L. & Dehesh, Ok. The eukaryotic MEP-pathway genes are evolutionarily conserved and originated from Chlaymidia and cyanobacteria. BMC Genomics 22, 1–12 (2021).

    Article 

    Google Scholar 

  • Lichtenthaler, H. Ok., Schwender, J., Disch, A. & Rohmer, M. Biosynthesis of isoprenoids in greater plant chloroplasts proceeds through a mevalonate-independent pathway. FEBS Lett. 400, 271–274 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Goldstein, J. L. & Brown, M. S. Regulation of the mevalonate pathway. Nature 343, 425–430 (1990).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Jiang, S.-Y. et al. Discovery of a potent HMG-CoA reductase degrader that eliminates statin-induced reductase accumulation and lowers ldl cholesterol. Nat. Commun. 9, 1–13 (2018).

    ADS 
    Article 

    Google Scholar 

  • Burg, J. S. & Espenshade, P. J. Regulation of HMG-CoA reductase in mammals and yeast. Prog. Lipid Res. 50, 403–410 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Yan, R. et al. A construction of human Scap sure to Insig-2 suggests how their interplay is regulated by sterols. Science 371, eabb2224 (2021).

  • Seydel, P. & Dörnenburg, H. Institution of in vitro vegetation, cell and tissue cultures from Oldenlandia affinis for the manufacturing of cyclic peptides. Plant Cell, Tissue Organ Cult. 85, 247–255 (2006).

    Article 

    Google Scholar 

  • Friesen, J. A. & Rodwell, V. W. The three-hydroxy-3-methylglutaryl coenzyme-A (HMG-CoA) reductases. Genome Biol. 5, 248 (2004).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Grundy, S. M. HMG-CoA reductase inhibitors for therapy of hypercholesterolemia. N. Engl. J. Med. 319, 24–33 (1988).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bochar, D. A., Stauffacher, C. V. & Rodwell, V. W. Sequence comparisons reveal two lessons of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Mol. Genet. Metab. 66, 122–127 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lawrence, C. M., Rodwell, V. W. & Stauffacher, C. V. Crystal construction of Pseudomonas mevalonii HMG-CoA reductase at 3.0 angstrom decision. Science 268, 1758–1762 (1995).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Istvan, E. S. & Deisenhofer, J. Structural mechanism for statin inhibition of HMG-CoA reductase. Science 292, 1160–1164 (2001).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Realized, R. M. & Fink, G. R. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase from Arabidopsis thaliana is structurally distinct from the yeast and animal enzymes. Proc. Natl Acad. Sci. USA 86, 2779–2783 (1989).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ragwan, E. R., Arai, E. & Kung, Y. New crystallographic snapshots of huge area actions in bacterial 3-hydroxy-3-methylglutaryl coenzyme A reductase. Biochemistry 57, 5715–5725 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Rodríguez-Concepción, M. & Boronat, A. Breaking new floor within the regulation of the early steps of plant isoprenoid biosynthesis. Curr. Opin. Plant Biol. 25, 17–22 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Endo, A., Kuroda, M. & Tsujita, Y. ML-236A, ML-236B, and ML-236C, new inhibitors of cholesterogenesis produced by Penicillium citrinum. J. Antibiotics 29, 1346–1348 (1976).

    CAS 
    Article 

    Google Scholar 

  • Tobert, J. A. Lovastatin and past: the historical past of the HMG-CoA reductase inhibitors. Nat. Rev. Drug Discov. 2, 517–526 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Tabernero, L., Rodwell, V. W. & Stauffacher, C. V. Crystal construction of a statin sure to a category II hydroxymethylglutaryl-CoA reductase. J. Biol. Chem. 278, 19933–19938 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bach, T. J. & Lichtenthaler, H. Ok. Inhibition by mevinolin of plant progress, sterol formation and pigment accumulation. Physiologia Plant. 59, 50–60 (1983).

    CAS 
    Article 

    Google Scholar 

  • Kasahara, H. et al. Contribution of the mevalonate and methylerythritol phosphate pathways to the biosynthesis of gibberellins in arabidopsis. J. Biol. Chem. 277, 45188–45194 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Nkembo, M. Ok., Lee, J.-B., Nakagiri, T. & Hayashi, T. Involvement of 2-C-methyl-D-erythritol-4-phosphate pathway in biosynthesis of aphidicolin-like tetracyclic diterpene of Scoparia dulcis. Chem. Pharm. Bull. 54, 758–760 (2006).

    CAS 
    Article 

    Google Scholar 

  • Jerwood, S. & Cohen, J. Sudden antimicrobial impact of statins. J. Antimicrobial Chemother. 61, 362–364 (2008).

    CAS 
    Article 

    Google Scholar 

  • Zang, Y. Y., Li, Y. M., Yin, Y., Chen, S. S. & Kai, Z. P. Discovery and quantitative structure-activity relationship examine of lepidopteran HMG‐CoA reductase inhibitors as selective pesticides. Pest Manag. Sci. 73, 1944–1952 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mind, R. A. et al. Herbicidal results of statin prescribed drugs in Lemna gibba. Environ. Sci. Technol. 40, 5116–5123 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Shimada, T. L. et al. HIGH STEROL ESTER 1 is a key consider plant sterol homeostasis. Nat. Vegetation 5, 1154–1166 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Enjuto, M. et al. Arabidopsis thaliana incorporates two differentially expressed 3-hydroxy-3-methylglutaryl-CoA reductase genes, which encode microsomal types of the enzyme. Proc. Natl Acad. Sci. USA 91, 927–931 (1994).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Li, W. et al. Species-specific growth and molecular evolution of the 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) gene household in vegetation. PLoS ONE 9, e94172 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Vögeli, B., Shima, S., Erb, T. J. & Wagner, T. Crystal construction of archaeal HMG-CoA reductase: insights into structural adjustments of the C-terminal helix of the class-I enzyme. FEBS Lett. 593, 543–553 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Peacock, R. B. et al. Structural and useful characterization of dynamic oligomerization in Burkholderia cenocepacia HMG-CoA reductase. Biochemistry 58, 3960–3970 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Miller, B. R. & Kung, Y. Structural options and area actions controlling substrate binding and cofactor specificity at school II HMG-CoA reductase. Biochemistry 57, 654–662 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Steussy, C. N. et al. A novel function for coenzyme A throughout hydride switch in 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Biochemistry 52, 5195–5205 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sarver, R. W. et al. Thermodynamic and construction guided design of statin based mostly inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase. J. Medicinal Chem. 51, 3804–3813 (2008).

    CAS 
    Article 

    Google Scholar 

  • Park, W. Ok. et al. Hepatoselectivity of statins: design and synthesis of 4-sulfamoyl pyrroles as HMG-CoA reductase inhibitors. Bioorg. Medicinal Chem. Lett. 18, 1151–1156 (2008).

    CAS 
    Article 

    Google Scholar 

  • Pfefferkorn, J. A. et al. Substituted pyrazoles as hepatoselective HMG-CoA reductase inhibitors: discovery of (3R,5R)−7-[2-(4-fluoro-phenyl)−4-isopropyl-5-(4-methyl-benzylcarbamoyl)−2H-pyrazol-3-yl]−3,5-dihydroxyheptanoic acid (PF-3052334) as a candidate for the therapy of hypercholesterolemia. J. Medicinal Chem. 51, 31–45 (2008).

  • Pfefferkorn, J. A. et al. Design and synthesis of novel, conformationally restricted HMG-CoA reductase inhibitors. Bioorg. Medicinal Chem. Lett. 17, 4531–4537 (2007).

    CAS 
    Article 

    Google Scholar 

  • Pfefferkorn, J. A. et al. Design and synthesis of hepatoselective, pyrrole-based HMG-CoA reductase inhibitors. Bioorg. Medicinal Chem. Lett. 17, 4538–4544 (2007).

    CAS 
    Article 

    Google Scholar 

  • Istvan, E. S., Palnitkar, M., Buchanan, S. Ok. & Deisenhofer, J. Crystal construction of the catalytic portion of human HMG‐CoA reductase: insights into regulation of exercise and catalysis. EMBO J. 19, 819–830 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Tabernero, L., Bochar, D. A., Rodwell, V. W. & Stauffacher, C. V. Substrate-induced closure of the flap area within the ternary advanced constructions offers insights into the mechanism of catalysis by 3-hydroxy-3-methylglutaryl-CoA reductase. Proc. Natl Acad. Sci. USA 96, 7167–7171 (1999).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Oliveira, E. F., Cerqueira, N. M., Ramos, M. J. & Fernandes, P. A. QM/MM examine of the mechanism of discount of 3-hydroxy-3-methylglutaryl coenzyme A catalyzed by human HMG-CoA reductase. Catal. Sci. Technol. 6, 7172–7185 (2016).

    CAS 
    Article 

    Google Scholar 

  • Tian, W., Chen, C., Lei, X., Zhao, J. & Liang, J. CASTp 3.0: computed atlas of floor topography of proteins. Nucleic Acids Res. 46, W363–W367 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Roth, B. D. et al. Inhibitors of ldl cholesterol biosynthesis. 1. trans-6-(2-pyrrol-1-ylethyl)−4-hydroxypyran-2-ones, a novel collection of HMG-CoA reductase inhibitors. 1. Results of structural modifications on the 2-and 5-positions of the pyrrole nucleus. J. Medicinal Chem. 33, 21–31 (1990).

    CAS 
    Article 

    Google Scholar 

  • Kennedy, J. et al. Modulation of polyketide synthase exercise by accent proteins throughout lovastatin biosynthesis. Science 284, 1368–1372 (1999).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hutchinson, C. R. et al. Facets of the biosynthesis of non-aromatic fungal polyketides by iterative polyketide synthases. Antonie Van. Leeuwenhoek 78, 287–295 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Martín, J.-F., García-Estrada, C. & Zeilinger, S. Biosynthesis and Molecular Genetics of Fungal Secondary Metabolites (Springer, 2014).

  • Theivagt, A. E., Amanti, E. N., Beresford, N. J., Tabernero, L. & Friesen, J. A. Characterization of an HMG-CoA reductase from Listeria monocytogenes that displays twin coenzyme specificity. Biochemistry 45, 14397–14406 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Re, E. B., Jones, D. & Realized, R. M. Co-expression of native and launched genes reveals cryptic regulation of HMG CoA reductase expression in Arabidopsis. Plant J. 7, 771–784 (1995).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Marrone, P. G. Pesticidal pure merchandise—standing and future potential. Pest Manag. Sci. 75, 2325–2340 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Haines, B. E., Wiest, O. & Stauffacher, C. V. The more and more advanced mechanism of HMG-CoA reductase. Acc. Chem. Res. 46, 2416–2426 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Haines, B. E., Steussy, C. N., Stauffacher, C. V. & Wiest, O. Molecular modeling of the response pathway and hydride switch reactions of HMG-CoA reductase. Biochemistry 51, 7983–7995 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Abifadel, M. et al. Mutations in PCSK9 trigger autosomal dominant hypercholesterolemia. Nat. Genet. 34, 154–156 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gaudet, D. et al. ANGPTL3 inhibition in homozygous familial hypercholesterolemia. N. Engl. J. Med. 377, 296–297 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Hey, S. J. et al. Enhanced seed phytosterol accumulation by expression of a modified HMG-CoA reductase. Plant Biotechnol. J. 4, 219–229 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Yan, Y. et al. Resistance-gene-directed discovery of a natural-product herbicide with a brand new mode of motion. Nature 559, 415–418 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Xie, L. et al. Harzianic acid from Trichoderma afroharzianum is a pure product inhibitor of acetohydroxyacid synthase. J. Am. Chem. Soc. 143, 9575–9584 (2021).

    CAS 
    Article 

    Google Scholar 

  • Corral, M. G., Leroux, J., Stubbs, Ok. A. & Mylne, J. S. Herbicidal properties of antimalarial medicine. Sci. Rep. 7, 1–9 (2017).

    Article 

    Google Scholar 

  • Haywood, J. et al. Structural foundation of ribosomal peptide macrocyclization in vegetation. eLife 7, e32955 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Aragao, D. et al. MX2: a high-flux undulator microfocus beamline serving each the chemical and macromolecular crystallography communities on the Australian Synchrotron. J. Synchrotron Radiat. 25, 885–891 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kabsch, W. XDS. Acta Crystallogr. Part D. Biol. Crystallogr. 66, 125–132 (2010).

  • Winn, M. D. et al. Overview of the CCP4 suite and present developments. Acta Crystallogr. Sect. D. Biol. Crystallogr. 67, 235–242 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • McCoy, A. J. et al. Phaser crystallographic software program. J. Appl. Crystallogr. 40, 658–674 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, Ok. Options and growth of Coot. Acta Crystallogr. Sect. D. Biol. Crystallogr. 66, 486–501 (2010).

    CAS 
    Article 

    Google Scholar 

  • Chen, V. B. et al. MolProbity: all-atom construction validation for macromolecular crystallography. Acta Crystallogr. Sect. D. Biol. Crystallogr. 66, 12–21 (2010).

    CAS 
    Article 

    Google Scholar 

  • Curtis, M. D. & Grossniklaus, U. A gateway cloning vector set for high-throughput useful evaluation of genes in planta. Plant Physiol. 133, 462–469 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Clough, S. J. & Bent, A. F. Floral dip: a simplified technique for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 736–743 (1998).

    Article 

    Google Scholar 

  • Bechtold, N., Ellis, J. & Pelletier, G. In planta Agrobacterium-mediated gene switch by infiltration of grownup Arabidopsis thaliana vegetation. Comptes rendus de. l’Académie des. Sci. Série III, Sci. de. la vie 316, 1194–1199 (1993).

    CAS 

    Google Scholar 

  • Facebook
    Twitter
    Pinterest
    WhatsApp
    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments